Advertisement

Exploring Validity Indices for Clustering Textual Data

  • Ahmad El Sayed
  • Hakim Hacid
  • Djamel Zighed
Part of the Studies in Computational Intelligence book series (SCI, volume 165)

Abstract

The goal of any clustering algorithm producing flat partitions of data, is to find both the optimal clustering solution and the optimal number of clusters. One natural way to reach this goal without the need for parameters, is to involve a validity index in a clustering process, which can lead to an objective selection of the optimal number of clusters. In this chapter, we provide two main contributions. Firstly, since validity indices have been mostly studied in a two or three-dimensionnal datasets, we have chosen to evaluate them in a real-world applications, document and word clustering. Secondly, we propose a new context-aware method that aims at enhancing the validity indices usage as stopping criteria in agglomerative algorithms. Experimental results show that the method is a step-forward in using, with more reliability, validity indices as stopping criteria.

Keywords

Criterion Function Cluster Solution Validity Index Query Expansion Relative Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press / Addison-Wesley (1999)Google Scholar
  2. 2.
    Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Pacific Symposium on Biocomputing, pp. 6–17 (2002)Google Scholar
  3. 3.
    Bezdek, J.C., Li, W., Attikiouzel, Y., Windham, M.P.: A geometric approach to cluster validity for normal mixtures. Soft Comput. 1(4), 166–179 (1997)Google Scholar
  4. 4.
    Chou, C.-H., Su, M.-C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7(2), 205–220 (2004)MathSciNetGoogle Scholar
  5. 5.
    Christopher Manning, H.S.: Foundations of statistical natural language processing (1999)Google Scholar
  6. 6.
    Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divise and agglomerative clustering for learning taxonomies from text. In: ECAI, pp. 435–439 (2004)Google Scholar
  7. 7.
    Davies, D.L., B.D.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2) (1979)Google Scholar
  8. 8.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. John Willey & Sons (2001)Google Scholar
  9. 9.
    Dunn, J.C.: Well separated clusters and optimal fuzzy paritions. Journal Cybern. 4, 95–104 (1974)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fraley, C., Raftery, A.E.: How many clusters? which clustering method? answers via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Greene, D., Cunningham, P.: Efficient prediction-based validation for document clustering. In: ECML, pp. 663–670 (2006)Google Scholar
  12. 12.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity checking methods: Part ii. SIGMOD Record 31(3), 19–27 (2002)CrossRefGoogle Scholar
  13. 13.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)Google Scholar
  14. 14.
    Harris, Z.S.: Distributional structure (1985)Google Scholar
  15. 15.
    Hearst, M.A., Pedersen, J.O.: Reexamining the cluster hypothesis: Scatter/gather on retrieval results. In: SIGIR, pp. 76–84 (1996)Google Scholar
  16. 16.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  17. 17.
    Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput. 22(11), 1025–1034 (1973)CrossRefGoogle Scholar
  18. 18.
    Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: ICML, pp. 170–178 (1997)Google Scholar
  19. 19.
    Krzanowski, W.J., Lai, Y.T.: A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 44, 23–34 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002)CrossRefGoogle Scholar
  22. 22.
    Michalski, R., Stepp, R., Diday, E.: A recent advance in data analysis: Clustering objects into classes characterized by conjuctive concepts. Progress in Pattern Recognition 1 (1983)Google Scholar
  23. 23.
    Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  24. 24.
    Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2), 159–179 (1985)CrossRefGoogle Scholar
  25. 25.
    Pedersen, T., Kulkarni, A.: Selecting the “right” number of senses based on clustering criterion functions. In: EACL (2006)Google Scholar
  26. 26.
    Qiu, Y., Frei, H.-P.: Concept based query expansion. In: SIGIR 1993: Proc. of the 16th annual Int. ACM SIGIR Conf. on Research and development in information retrieval, pp. 160–169. ACM, New York (1993)CrossRefGoogle Scholar
  27. 27.
    Raskutti, B., Leckie, C.: An evaluation of criteria for measuring the quality of clusters. In: IJCAI, pp. 905–910 (1999)Google Scholar
  28. 28.
    Rissanen, J.: Stochastic complexity in statistical inquiry. World Scientific Publishing Co., Singapore (1989)zbMATHGoogle Scholar
  29. 29.
    Saitta, S., Raphael, B., Smith, I.F.C.: A bounded index for cluster validity. In: MLDM, pp. 174–187 (2007)Google Scholar
  30. 30.
    Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Technical report, Ithaca, NY, USA (1987)Google Scholar
  31. 31.
    Sergios Theodoridis, K.K.: Pattern recognition. Academic Press, London (1999)Google Scholar
  32. 32.
    Shari Landes, R.I.T., Leacock, C.: Building semantic concordances, pp. 199–216 (1998)Google Scholar
  33. 33.
    Sharma, S.: Applied multivariate techniques. John Wiley and Sons, Chichester (1996)Google Scholar
  34. 34.
    Stokoe, C., Oakes, M.P., Tait, J.: Word sense disambiguation in information retrieval revisited. In: SIGIR, pp. 159–166 (2003)Google Scholar
  35. 35.
    Harabasz, C.T.: A dendrite method for cluster analysis. Communications in Statistics 3, 1–27 (1974)MathSciNetGoogle Scholar
  36. 36.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a dataset via the gap statistic. Technical report, Dept. of Statistics, Stanford University (2000)Google Scholar
  37. 37.
    Zamir, O., Etzioni, O., Madani, O., Karp, R.M.: Fast and intuitive clustering of web documents. In: KDD, pp. 287–290 (1997)Google Scholar
  38. 38.
    Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning 55(3), 311–331 (2004)zbMATHCrossRefGoogle Scholar
  39. 39.
    Zhao, Y., Karypis, G., Fayyad, U.M.: Hierarchical clustering algorithms for document datasets. Data Min. Knowl. Discov. 10(2), 141–168 (2005)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ahmad El Sayed
    • 1
  • Hakim Hacid
    • 1
  • Djamel Zighed
    • 1
  1. 1.ERIC Laboratory- 5University of LyonBron cedexFrance

Personalised recommendations