Integrating Cross-Dominance Adaptation in Multi-Objective Memetic Algorithms

  • Andrea Caponio
  • Ferrante Neri
Part of the Studies in Computational Intelligence book series (SCI, volume 171)


This chapter proposes a novel adaptive memetic approach for solving multi-objective optimization problems. The proposed approach introduces the novel concept of crossdominance and employs this concept within a novel probabilistic scheme which makes use of the Wigner distribution for performing coordination of the local search. Thus, two local searchers are integrated within an evolutionary framework which resorts to an evolutionary algorithm previously proposed in literature for solving multi-objective problems. These two local searchers are a multi-objective version of simulated annealing and a novel multi-objective implementation of the Rosenbrock algorithm.

Numerical results show that the proposed algorithm is rather promising and, for several test problems, outperforms two popular meta-heuristics present in literature. A realworld application in the field of electrical engineering, the design of a control system of an electric motor, is also shown. The application of the proposed algorithm leads to a solution which allows successful control of a direct current motor by simultaneously handling the conflicting objectives of the dynamic response.


Local Search Multiobjective Optimization Memetic Algorithm Decision Space Direct Current Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Berlin (1998)Google Scholar
  2. 2.
    Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proc. of 1st International Conference on Genetic Algorithms and Their Applications, pp. 93–100 (1985)Google Scholar
  3. 3.
    Deb, K.: Multi-objective Optimization using Evolutionary Algorithms, pp. 147–149. John Wiley and Sons LTD, Chichester (2001)MATHGoogle Scholar
  4. 4.
    Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)MATHGoogle Scholar
  5. 5.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA-2: Improving the Strength Pareto Evolutionary Algorithm. Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)Google Scholar
  7. 7.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Tech. Rep. 790, Caltech Concurrent Computation Program (1989)Google Scholar
  8. 8.
    Neri, F., Toivanen, J., Mäkinen, R.A.E.: An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. In: Applied Intelligence, vol. 27, pp. 219–235. Springer, Heidelberg (2007) (special issue on Computational Intelligence in Medicine and Biology)Google Scholar
  9. 9.
    Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algorithm for designing HIV multidrug therapies. IEEE/ACM Transactions on Computational Biology and Bioinformatics, Special Issue on Computational Intelligence Approaches in Computational Biology and Bioinformatics 4(2), 264–278 (2007)Google Scholar
  10. 10.
    Krasnogor, N.: Toward robust memetic algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 185–207. Springer, Berlin (2004)Google Scholar
  11. 11.
    Ong, Y.S., Keane, A.J.: Meta-lamarkian learning in memetic algorithms. IEEE Transactions on Evolutionary Computation 8(2), 99–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: A comparative study. IEEE Transactions On Systems, Man and Cybernetics - Part B 36(1), 141–152 (2006)CrossRefGoogle Scholar
  13. 13.
    Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation 9, 474–488 (2005)CrossRefGoogle Scholar
  14. 14.
    Knowles, J., Corne, D.: Memetic algorithms for multiobjective optimization: issues, methods and prospects. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 313–352. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in hybrid evolutionary multi-criterion optimization algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, New York, USA, pp. 1301–1308 (July 2002)Google Scholar
  16. 16.
    Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flow shop scheduling. IEEE Transactions on Evolutionary Computation 7, 204–223 (2003)CrossRefGoogle Scholar
  17. 17.
    Ishibuchi, H., Hitotsuyanagi, Y., Nojima, Y.: An empirical study on the specification of the local search application probability in multiobjective memetic algorithms. In: Proc. of the IEEE Congress on Evolutionary Computation, pp. 2788–2795 (September 2007)Google Scholar
  18. 18.
    Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation 2, 221–248 (1995)CrossRefGoogle Scholar
  19. 19.
    Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering designGoogle Scholar
  20. 20.
    Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex SYstems 9(2), 115–148 (1995)MATHMathSciNetGoogle Scholar
  21. 21.
    Deb, K., Kumar, A.: Real-coded genetic algorithms with simulated binary crossover: Studies on multi-modal and multi-objective problems. Complex SYstems 9(6), 431–454 (1995)Google Scholar
  22. 22.
    Suman, B.: Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem. Computers and Chemical Engineering 28Google Scholar
  23. 23.
    Rosenbrock, H.H.: An automatic method for findong the greatest or least value of a function. The Computer Journal 3(3), 175–184 (1960)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Birkho, G., Lane, S.M.: A Survey of Modern Algebra. Macmillan, Basingstoke (1953)Google Scholar
  25. 25.
    Szu, H., Hartley, R.: Fast simulated annealing. Physiscs Letters A 122, 157–162 (1987)CrossRefGoogle Scholar
  26. 26.
    Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms part-ii aplication example. IEEE Transctions on Systems,Man and Cyberntics, PartA, Systems and Humans, 38–47 (1998)Google Scholar
  27. 27.
    Poloni, C.: Hybrid GA for multi-objective aerodynamic shape optimization. In: Winter, G., Periaux, J., Galan, M., Cuesta, P. (eds.) Gentic algorithms in egineering and computer science, pp. 397–414. Wiley, Chichester (1997)Google Scholar
  28. 28.
    Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Mäner, R. (eds.) Parallel Problem Solving from Nature, vol. I. Springer, BerlinGoogle Scholar
  29. 29.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms:empirical results. Evolutionary Computaion Journal 8, 173–195 (2000)CrossRefGoogle Scholar
  30. 30.
    Multi-objective genetic algorithms:problem difficulties and construction of test functions. Evolutionary Computaion Journal  7, 205–230 (1999)Google Scholar
  31. 31.
    Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  32. 32.
    Åström, K.J., Wittenmark, B.: Adaptive Control, 2nd edn. Prentice Hall, Englewood Cliffs (1994)Google Scholar
  33. 33.
    Slotine, J.-J., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  34. 34.
    Khorrami, H.M.F., Krishnamurthy, P.: Modeling and Adaptive Nonlinear Control of Electric Motors. Springer, Heidelberg (2003)Google Scholar
  35. 35.
    Jain, L.C., de Silva, C.W.: Intelligent Adap.tive Control: Industrial Applications. CRC, Boca Raton (1998)Google Scholar
  36. 36.
    Åström, K.J., Hägglund, T.: The future of PID control. Control Engineering Practice 9(13), 1163–1175 (2001)CrossRefGoogle Scholar
  37. 37.
    Panagopoulos, H., Åström, K.J., Hägglund, T.: Design of PID controllers based on constrained optimisation. IEE Proceedings - Control Theory & Applications 149, 32–40 (2002)CrossRefGoogle Scholar
  38. 38.
    Dury, W.: Control Techniques Drives & Controls Handbook. Institution Electrical Engineers (2001)Google Scholar
  39. 39.
    Leonhard, W.: Control of Electrical Drives, 2nd edn. Springer, Heidelberg (2001)Google Scholar
  40. 40.
    Krishnan, R.: Electronic Motor Drives: Modeling, Analysis and Control. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  41. 41.
    Zanchetta, P., Sumner, M., Cupertino, F., Marinelli, M., Mininno, E.: On-line and off-line control design in power electronics and drives using genetic algorithms. In: Proceedings of the IEEE Industry Applications Conference, pp. 864–871 (2004)Google Scholar
  42. 42.
    Cascella, G.L., Salvatore, N., Sumner, M., Salvatore, L.: On-line simplex-genetic algorithm for self-commissioning of electric drives. In: Proceedings 11th EPE, pp. 277–283 (2005)Google Scholar
  43. 43.
    Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for on-line and off-line control design of pmsm drives. IEEE Transactions on System Man and Cybernetics-part B, special issue on Memetic Algorithms 37(1), 28–41 (2007)Google Scholar
  44. 44.
    Szklarski, K.J.L., Horodecki, A.: Electric Drive Systems Dynamics. Elsevier Science Ltd., Amsterdam (1990)Google Scholar
  45. 45.
    del Toro Garcia, X., Neri, F., Cascella, G.L., Salvatore, N.: A surrogate assisted hooke-jeeves algorithm to optimize the control system of a pmsm drive. In: Proceedings of IEEE International Symposium on Industrial Electronics, vol. 1, pp. 347–352 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrea Caponio
    • 1
  • Ferrante Neri
    • 2
  1. 1.Department of Electrotechnics and ElectronicsTechnical University of BariItaly
  2. 2.Department of Mathematical Information TechnologyUniversity of JyväskyläFinland

Personalised recommendations