Learning Left-to-Right and Right-to-Left Iterative Languages

  • Jeffrey Heinz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5278)


The left-to-right and right-to-left iterative languages are previously unnoticed subclasses of the regular languages of infinite size that are identifiable in the limit from positive data. Essentially, these language classes are the ones obtained by merging final states in a prefix tree and initial states in a suffix tree of the observed sample, respectively. Strikingly, these classes are also transparently related to the zero-reversible languages because some algorithms that learn them differ minimally from the ZR algorithm given in Angluin (1982). Second, they are part of the answer to the challenge provided by Muggleton (1990), who proposed mapping the space of language classes obtainable by a general state-merging algorithm IM1. Third, these classes are relevant to a hypothesis of how children can acquire sound patterns of their language—in particular, the hypothesis that all phonotactic patterns found in natural language are neighborhood-distinct (Heinz 2007).


Regular Expression Regular Language Positive Data Language Class Sound Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)zbMATHCrossRefGoogle Scholar
  2. 2.
    Marcus, G.: Negative evidence in language acquisition. Cognition 46, 53–85 (1993)CrossRefGoogle Scholar
  3. 3.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Angluin, D.: Inductive inference of formal languages from positive data. Information Control 45, 117–135 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Angluin, D.: Inference of reversible languages. Journal for the Association of Computing Machinery 29(3), 741–765 (1982)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict sense. In: Proceedings of the Workshop on Algorithmic Learning Theory, pp. 325–338 (1990)Google Scholar
  7. 7.
    Muggleton, S.: Inductive Acquisition of Expert Knowledge. Addison-Wesley, Reading (1990)Google Scholar
  8. 8.
    Kanazawa, M.: Identification in the limit of categorical grammars. Journal of Logic, Language, and Information 5, 115–155 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Denis, F., Lemay, A., Terlutte, A.: Some classes of regular languages identifiable in the limit from positive data. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 63–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Fernau, H.: Identification of function distinguishable languages. Theoretical Computer Science 290, 1679–1711 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yokomori, T.: Polynomial-time identification of very simple grammars from positive data. Theoretical Computer Science 298(1), 179–206 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Oates, T., Armstrong, T., Bonache, L.B.: Inferring grammars for mildly context-sensitive languages in polynomial-time. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 137–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)MathSciNetGoogle Scholar
  14. 14.
    Greenberg, J.: Some universals of grammar with particular reference to the order of meaningful elements. In: Universals of Language, pp. 73–113. MIT Press, Cambridge (1963)Google Scholar
  15. 15.
    Mairal, R., Gil, J. (eds.): Linguistic Universals. Cambridge University Press, Cambridge (2006)Google Scholar
  16. 16.
    Stabler, E.P.: Computational models of language universals: Expressiveness, learnability and consequences. In: Cornell Symposium on Language Universals (2007)Google Scholar
  17. 17.
    Shieber, S.: Evidence against the context-freeness of natural language. Linguistics and Philosophy 8, 333–343 (1985)CrossRefGoogle Scholar
  18. 18.
    Kobele, G.: Generating Copies: An Investigation into Structural Identity in Language and Grammar. PhD thesis, University of California, Los Angeles (2006)Google Scholar
  19. 19.
    Johnson, C.D.: Formal Aspects of Phonological Description. Mouton, The Hague (1972)Google Scholar
  20. 20.
    Kaplan, R., Kay, M.: Regular models of phonological rule systems. Computational Linguistics 20(3), 331–378 (1994)Google Scholar
  21. 21.
    Heinz, J.: The Inductive Learning of Phonotactic Patterns. PhD thesis, University of California, Los Angeles (2007)Google Scholar
  22. 22.
    Pullum, G., Rogers, J.: Aural pattern recognition experiments and the subregular hierarchy. In: Kracht, M. (ed.) Proceedings of 10th Mathematics of Language Conference, pp. 1–7. University of California, Los Angeles (2007)Google Scholar
  23. 23.
    Jusczyk, P., Cutler, A., Redanz, N.: Infants’ preference for the predominant stress patterns of english words. Child Development 64, 675–687 (1993)CrossRefGoogle Scholar
  24. 24.
    Jusczyk, P., Luce, P., Charles-Luce, J.: Infants’ sensitivity to phonotactic patterns in the native language. Journal of Memory and Language 33, 630–645 (1994)CrossRefGoogle Scholar
  25. 25.
    Mattys, S., Jusczyk, P.: Phonotactic cues for segmentation of fluent speech by infants. Cognition 78, 91–121 (2001)CrossRefGoogle Scholar
  26. 26.
    McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)zbMATHGoogle Scholar
  27. 27.
    Kracht, M.: The Mathematics of Language. Mouton de Gruyter, Berlin (2003)zbMATHGoogle Scholar
  28. 28.
    Hansson, G.: Theoretical and typological issues in consonant harmony. PhD thesis, University of California, Berkeley (2001)Google Scholar
  29. 29.
    Hayes, B.: Metrical Stress Theory. Chicago University Press (1995)Google Scholar
  30. 30.
    Heinz, J.: Learning quantity insensitive stress systems via local inference. In: Proceedings of the Eighth Meeting of the ACL Special Interest Group in Computational Phonology at HLT-NAACL, New York City, USA, pp. 21–30 (2006)Google Scholar
  31. 31.
    Heinz, J.: On the role of locality in learning stress patterns. Phonology (to appear)Google Scholar
  32. 32.
    Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn: An Introduction to Learning Theory, 2nd edn. The MIT Press, Cambridge (1999)Google Scholar
  33. 33.
    Case, J., Moelius, S.: Parallelism increases iterative learning power. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 49–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (2001)zbMATHGoogle Scholar
  35. 35.
    de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Machine Learning 27, 125–138 (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jeffrey Heinz
    • 1
  1. 1.University of DelawareNewarkUSA

Personalised recommendations