Identification in the Limit of k,l-Substitutable Context-Free Languages

  • Ryo Yoshinaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5278)


Recently Clark and Eyraud (2005, 2007) have shown that substitutable context-free languages are polynomial-time identifiable in the limit from positive data. Substitutability in context-free languages can be thought of as the analogue of reversibility in regular languages. While reversible languages admit a hierarchy, namely k-reversible regular languages for each nonnegative integer k, Clark and Eyraud targeted the subclass of context-free languages that corresponds to zero-reversible regular languages only. Following Clark and Eyraud’s proposal, this paper introduces a hierarchy of substitutable context-free languages as the analogue of that of k-reversible regular languages and shows that each class in the hierarchy is also polynomial-time identifiable in the limit from positive data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Inference of reversible languages. Journal of the Association for Computing Machinery 29(3), 741–765 (1982)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Angluin, D.: Negative results for equivalence queries. Machine Learning 5, 121–150 (1990)Google Scholar
  3. 3.
    Boasson, L., Sénizergues, G.: NTS languages are deterministic and congruential. Journal of Computer and System Sciences 31(3), 332–342 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node selecting tree transducer. Machine Learning 66(1), 33–67 (2007)CrossRefGoogle Scholar
  5. 5.
    Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 59–71. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Clark, A., Eyraud, R.: Identification in the limit of substitutable context-free languages. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 283–296. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Clark, A., Eyraud, R.: Polynomial identification in the limit of context-free substitutable languages. Journal of Machine Learning Research 8, 1725–1745 (2007)MathSciNetGoogle Scholar
  8. 8.
    Engelfriet, J.: An elementary proof of double Greibach normal form. Information Processing Letters 44(6), 291–293 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)zbMATHCrossRefGoogle Scholar
  10. 10.
    Greibach, S.A.: A new normal-form theorem for context-free phrase structure grammars. Journal of the Association for Computing Machinery 12(1), 42–52 (1965)zbMATHMathSciNetGoogle Scholar
  11. 11.
    de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Machine Learning 27, 125–138 (1997)zbMATHCrossRefGoogle Scholar
  12. 12.
    de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognition 38(9), 332–1348 (2005)Google Scholar
  13. 13.
    Kobayashi, S.: Iterated transductions and efficient learning from positive data: A unifying view. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 157–170. Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Kobayashi, S., Yokomori, T.: On approximately identifying concept classes in the limit. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997, pp. 298–312. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Kobayashi, S., Yokomori, T.: Identifiability of subspaces and homomorphic images of zero-reversible languages. In: Li, M., Maruoka, A. (eds.) ALT 1997. LNCS, vol. 1316, pp. 48–61. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Kobayashi, S., Yokomori, T.: Learning approximately regular languages with reversible languages. Theoretical Computer Science 174(1-2), 251–257 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages from positive data: A survey. Theoretical Computer Science 397(1-3), 194–232 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lee, L.: Learning of context-free languages: A survey of the literature. Technical Report TR-12-96, Harvard University (1996),
  19. 19.
    Mäkinen, E.: On inferring zero-reversible languages. Acta Cybernetica 14(3), 479–484 (2000)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Rosenkrantz, D.J.: Matrix equations and normal forms for context-free grammars. Journal of ACM 14(3), 501–507 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sempere, J.M.: Learning reversible languages with terminal distinguishability. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 354–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Sénizergues, G.: The equivalence and inclusion problems for NTS languages. Journal of Computer and System Sciences 31(3), 303–331 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tîrnauca, C., Knuutila, T.: Polynomial time algorithms for learning k-reversible languages and pattern languages with correction queries. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 272–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Wakatsuki, M., Tomita, E.: A fast algorithm for checking the inclusion for very simple deterministic pushdown automata. IEICE transactions on information and systems E76-D(10), 1224–1233 (1993)Google Scholar
  25. 25.
    Yokomori, T.: Polynomial-time identification of very simple grammars from positive data. Theoretical Computer Science 298, 179–206 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Yokomori, T.: Erratum to Polynomial-time identification of very simple grammars from positive data. Theoret. Comput. Sci. 298, 179–206 (2003); Theoretical Computer Science 377(1-3), 282–283 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ryo Yoshinaka
    • 1
  1. 1.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations