An Algorithm for Inferring Mitogenome Rearrangements in a Phylogenetic Tree

  • Matthias Bernt
  • Daniel Merkle
  • Martin Middendorf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5267)

Abstract

Given the mitochondrial gene orders and the phylogenetic relationship of a set of unichromosomal taxa, we study the problem of finding a plausible and parsimonious assignment of genomic rearrangement events to the edges of the given phylogenetic tree. An algorithm called algorithm TreeREx (tree rearrangement explorer) is proposed for solving this problem heuristically. TreeREx is based on an extended version of algorithm CREx (common interval rearrangement explorer, [4]) that heuristically computes pairwise rearrangement scenarios for gene order data. As phylogenetic events in such scenarios reversals, transpositions, reverse transpositions, and tandem duplication random loss (TDRL) operations are considered. CREx can detect such events as patterns in the signed strong interval tree, a data structure representing gene groups that appear consecutively in a set of two gene orders. TreeREx then tries to assign events to the edges of the phylogenetic tree, such that the pairwise scenarios are reflected on the paths of the tree. It is shown that TreeREx can automatically infer the events and the ancestral gene orders for realistic biological examples of mitochondrial gene orders. In an analysis of gene order data for teleosts, algorithm TreeREx is able to identify a yet undocumented TDRL towards species Bregmaceros nectabanus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arndt, A., Smith, M.J.: Mitochondrial gene rearrangement in the sea cucumber genus cucumaria. Mol. Biol. Evol. 15(8), 9–16 (1998)Google Scholar
  2. 2.
    Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not always difficult. IEEE/ACM Transaction on Computational Biology and Bioinformatics 4(1), 4–16 (2007)CrossRefGoogle Scholar
  3. 3.
    Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of k permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bernt, M., Merkle, D., Ramsch, K., Fritzsch, G., Perseke, M., Bernhard, D., Schlegel, M., Stadler, P.F., Middendorf, M.: Crex: inferring genomic rearrangements based on common intervals. Bioinformatics 23, 2957–2958 (2007)CrossRefGoogle Scholar
  5. 5.
    Blanchette, M., Kunisawa, T., Sankoff, D.: Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol. 49, 193–203 (1999)CrossRefGoogle Scholar
  6. 6.
    Boore, J.L.: Mitochondrial gene arrangement database (2006), http://evogen.jgi.doe.gov/
  7. 7.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)MATHMathSciNetGoogle Scholar
  8. 8.
    Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15, 93–113 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chaudhuri, K., Chen, K., Mihaescu, R., Rao, S.: On the tandem duplication-random loss model of genome rearrangement. In: SODA, pp. 564–570 (2006)Google Scholar
  10. 10.
    Heber, S., Stoye, J.: Algorithms for finding gene clusters. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 252–263. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Inoue, J.G., Miya, M., Tsukamoto, K., Nishida, M.: Evolution of the deep-sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated within the eels. Mol. Biol. Evol. 20, 1917–1924 (2003)CrossRefGoogle Scholar
  12. 12.
    Lavrov, D.V., Boore, J.L., Brown, W.M.: Complete mtdna sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol. Biol. Evol. 19, 163–169 (2002)Google Scholar
  13. 13.
    Littlewood, D.T.J., Smith, A.B., Cloug, h.K.A., Emson, R.H.: The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol. J. Linn. Soc. 61, 409–438 (1997)CrossRefGoogle Scholar
  14. 14.
    Miya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inous, J.G., Mukai, T., Satoh, T.P., Yamagucki, M., Kawaguchi, A., Mabuchi, K., Shirai, S.M., Nishida, M.: Major patterns of higher teleost phylogenies: a new perspective based on 100 complete mitochondrial dna sequences. Mol. Phyl. Evol. 26, 121–138 (2003)CrossRefGoogle Scholar
  15. 15.
    Mooi, R., David, B.: Skeletal homologies of echinoderms. Paleont. Soc. Papers 3, 305–335 (1997)Google Scholar
  16. 16.
    Parida, L.: Using pq structures for genomic rearrangement phylogeny. Journal of Computational Biology 13(10), 1685–1700 (2006)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Perseke, M., Fritzsch, G., Ramsch, K., Bernt, M., Merkle, D., Middendorf, M., Bernhard, D., Stadler, P.F., Schlegel, M.: Evolution of mitochondrial gene orders in echinoderms. Mol. Phyl. Evol. (in press, 2008)Google Scholar
  18. 18.
    Sankoff, D.: Analytical approaches to genomic evolution. Biochimie 75, 409–413 (1993)CrossRefGoogle Scholar
  19. 19.
    Scouras, A., Beckenbach, K., Arndt, A., Smith, M.J.: Complete mitochondrial genome dna sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny. Mol. Phyl. Evol. 31(1), 50–65 (2004)CrossRefGoogle Scholar
  20. 20.
    Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhao, H., Bourque, G.: Recovering true rearrangement events on phylogenetic trees. In: Tesler, G., Durand, D. (eds.) RECMOB-CG 2007. LNCS (LNBI), vol. 4751, pp. 149–161. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matthias Bernt
    • 1
  • Daniel Merkle
    • 2
  • Martin Middendorf
    • 1
  1. 1.Parallel Computing and Complex Systems Group, Department of Computer ScienceUniversity of LeipzigGermany
  2. 2.Department of Mathematics and Computer ScienceUniversity of Southern Denmark 

Personalised recommendations