Advertisement

Online Triangulation of Laser-Scan Data

  • Klaus Denker
  • Burkhard Lehner
  • Georg Umlauf

Summary

Hand-held laser scanners are used massively in industry for reverse engineering and quality measurements. In this process, it is difficult for the human operator to scan the target object completely and uniformly. Therefore, an interactive triangulation of the scanned points can assist the operator in this task.

Our method computes a triangulation of the point stream generated by the laser scanner online, i.e., the data points are added to the triangulation as they are received from the scanner. Multiple scanned areas and areas with a higher point density result in a finer mesh and a higher accuracy. On the other hand, the vertex density adapts to the estimated surface curvature. To assist the human operator the resulting triangulation is rendered with a visualization of its faithfulness. Additionally, our triangulation method allows for a level-of-detail representation to reduce the mesh complexity for fast rendering on low-cost graphics hardware.

Keywords

Surface Reconstruction Delaunay Triangulation Point Density Alpha Shape Neighborhood Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkiraju, N., Edelsbrunner, H., Facello, M., Fu, P., Mücke, E.P., Varela, C.: Alpha shapes: Definition and software. In: 1st Int. Computational Geometry Software Workshop, pp. 63–66 (1995)Google Scholar
  2. 2.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graphics 9(1), 3–15 (2003)CrossRefGoogle Scholar
  3. 3.
    Allègre, R., Chaine, R., Akkouche, S.: A streaming algorithm for surface reconstruction. In: Symp. Geom. Proc., pp. 79–88 (2007)Google Scholar
  4. 4.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: 6th ACM Symp. on Solid Modeling and Applications, pp. 249–266 (2001)Google Scholar
  5. 5.
    Bodenmüller, T., Hirzinger, G.: Online surface reconstruction from unorganized 3d-points for the DLR hand-guided scanner system. In: 2nd Symp. on 3D Data Processing, Visualization and Transmission, pp. 285–292 (2004)Google Scholar
  6. 6.
    Chaine, R.: A geometric convection approach of 3-d reconstruction. In: Symp. Geom. Proc., pp. 218–229 (2003)Google Scholar
  7. 7.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  8. 8.
    Denker, K., Lehner, B., Umlauf, G.: Live scanning video (2008), http://www-umlauf.informatik.uni-kl.de/~lehner/scanning.avi
  9. 9.
    Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29(4), 551–559 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)zbMATHCrossRefGoogle Scholar
  11. 11.
    Faro Europe GmbH & Co. KG (2008), http://www.faro.com
  12. 12.
    Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24(3), 544–552 (2005)CrossRefGoogle Scholar
  13. 13.
    Hjelle, Ø., Dæhlen, M.: Triangulations and Applications (Mathematics and Visualization). Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Comput. Graph. 26(2), 71–78 (1992)CrossRefGoogle Scholar
  15. 15.
    Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  16. 16.
    Kolluri, R., Richard Shewchuk, J., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds. In: Symp. Geom. Proc., pp. 11–21 (2004)Google Scholar
  17. 17.
    Marcks, G.: Bildnis Theodor Heuss. In: Pfalzgalerie Kaiserslautern, permanent loan from Vereinigung Pfälzer Kunstfreunde (VKP), Bronze sculpture, 31.5 x 21 x 23.5 cm (1952)Google Scholar
  18. 18.
    Schneider, J., Scheidegger, C.E., Fleishman, S., Silva, C.T.: Direct (re)meshing for efficient surface processing. Comp. Graph. Forum 25(3), 527–536 (2006)CrossRefGoogle Scholar
  19. 19.
    Smith, O.K.: Eigenvalues of a symmetric 3×3 matrix. Comm. ACM 4, 168 (1961)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Teichmann, M., Capps, M.: Surface reconstruction with anisotropic density-scaled alpha shapes. In: IEEE Conf. Vis., pp. 67–72 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Klaus Denker
    • 1
  • Burkhard Lehner
    • 1
  • Georg Umlauf
    • 1
  1. 1.Department of Computer ScienceUniversity of KaiserslauternGermany

Personalised recommendations