Triangulation of Simple 3D Shapes with Well-Centered Tetrahedra

  • Evan VanderZee
  • Anil N. Hirani
  • Damrong Guoy
Conference paper

Summary

A completely well-centered tetrahedral mesh is a triangulation of a three dimensional domain in which every tetrahedron and every triangle contains its circumcenter in its interior. Such meshes have applications in scientific computing and other fields. We show how to triangulate simple domains using completely well-centered tetrahedra. The domains we consider here are space, infinite slab, infinite rectangular prism, cube, and regular tetrahedron. We also demonstrate single tetrahedra with various combinations of the properties of dihedral acuteness, 2-well-centeredness, and 3-well-centeredness.

References

  1. 1.
    Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. ACM Transactions on Graphics 24(3), 617–625 (2005), doi:10.1145/1073204.1073238CrossRefGoogle Scholar
  2. 2.
    Barnes, E.S., Sloane, N.J.A.: The optimal lattice quantizer in three dimensions. SIAM Journal on Algebraic and Discrete Methods 4(1), 30–41 (1983), doi:10.1137/0604005MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cassidy, C., Lord, G.: A square acutely triangulated. J. Recreational Math. 13, 263–268 (1980)MathSciNetGoogle Scholar
  4. 4.
    Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. arXiv:math.DG/0508341 (2005), http://arxiv.org/abs/math.DG/0508341
  5. 5.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Review 41(4), 637–676 (1999), doi:10.1137/S0036144599352836Google Scholar
  6. 6.
    Eppstein, D., Sullivan, J.M., Üngör, A.: Tiling space and slabs with acute tetrahedra. Computational Geometry: Theory and Applications 27(3), 237–255 (2004), doi:10.1016/j.comgeo.2003.11.003MATHMathSciNetGoogle Scholar
  7. 7.
    Fuchs, A.: Automatic grid generation with almost regular Delaunay tetrahedra. In: Proceedings of the 7th International Meshing Roundtable, Dearborn, Michigan, October 26–28, 1998, pp. 133–147. Sandia National Laboratories (1998)Google Scholar
  8. 8.
    Hirani, A.N.: Discrete Exterior Calculus. PhD thesis, California Institute of Technology (May 2003), http://resolver.caltech.edu/CaltechETD:etd-05202003-095403
  9. 9.
    Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Nat. Acad. Sci. 95, 8341–8435 (1998), doi:10.1073/pnas.95.15.8431MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nicolaides, R.A.: Direct discretization of planar div-curl problems. SIAM Journal on Numerical Analysis 29(1), 32–56 (1992), doi:10.1137/0729003MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sazonov, I., Hassan, O., Morgan, K., Weatherill, N.P.: Smooth Delaunay – Voronoi dual meshes for co-volume integration schemes. In: Proceedings of the 15th International Meshing Roundtable, Birmingham, Alabama, September 17–20, 2006, Sandia National Laboratories (2006), doi:10.1007/978-3-540-34958-7_30Google Scholar
  12. 12.
    Sommerville, D.M.Y.: Space-filling tetrahedra in euclidean space. Proceedings of the Edinburgh Mathematical Society 41, 49–57 (1923)Google Scholar
  13. 13.
    Üngör, A., Sheffer, A.: Pitching tents in space-time: Mesh generation for discontinuous Galerkin method. International Journal of Foundations of Computer Science 13(2), 201–221 (2002), doi:10.1142/S0129054102001059Google Scholar
  14. 14.
    VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered planar triangulation – an iterative approach. In: Brewer, M.L., Marcum, D. (eds.) Proceedings of the 16th International Meshing Roundtable, Seattle, Washington, October 14–17, 2007, pp. 121–138. Springer, Heidelberg (2007), http://www.cs.uiuc.edu/hirani/papers/VaHiGuRa2007_IMR.pdf, doi:10.1007/978-3-540-75103-8_7Google Scholar
  15. 15.
    VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E.: Well-centered triangulation. Tech. Rep. UIUCDCS-R-2008-2936, Department of Computer Science, University of Illinois at Urbana-Champaign, Also available as a preprint at arXiv as arXiv:0802.2108v1 [cs.CG] (February 2008), http://arxiv.org/abs/0802.2108
  16. 16.
    Vander Zee, E., Hirani, A.N., Guoy, D., Zharnitsky, V.: Conditions for well-centeredness. Tech. Rep. UIUCDCS-R-2008-2971, Department of Computer Science, University of Illinois at Urbana-Champaign (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Evan VanderZee
    • 1
  • Anil N. Hirani
    • 2
  • Damrong Guoy
    • 3
  1. 1.Department of Mathematics 
  2. 2.Department of Computer Science 
  3. 3.Center for Simulation of Advanced Rockets University of Illinois at Urbana-Champaign 

Personalised recommendations