EEG - fMRI pp 153-171 | Cite as

EEG Quality:The Image Acquisition Artefact

  • Petra Ritter
  • Robert Becker
  • Frank Freyer
  • Arno Villringer


In this chapter, we focus on the artefacts that arise in the EEG during the fMRI acquisition process. Functional MRI using echo planar imaging (EPI) sequences involves the application of rapidly varying magnetic field gradients for spatial encoding of the MR signal and radiofrequency (RF) pulses for spin excitation (see the chapter “The Basics of Functional Magnetic Resonance Imaging”). Early in the implementation of EEG–fMRI, it was observed that the acquisition of an MR image results in complete obscuration of the physiological EEG (Ives et al. 1993; Allen et al. 2000). Electromagnetic induction in the circuit formed by the electrodes, leads, patient and amplifier exposed to a time-varying magnetic field causes an electromotive force. Artefacts induced in the EEG by the scanning process have a strong deterministic component, due to the preprogrammed nature of the RF and gradient switching sequence, and therefore artefact correction is generally considered a lesser problem than pulse-related artefacts (see the chapter “EEG Quality: Origin and Reduction of the EEG Cardiac-Related Artefact”). According to Faraday’s law of induction, the induced electromotive force is proportional to the time derivative of the magnetic flux (summation of the magnetic field perpendicular to the circuit plane over the area circuit), dΦ/dt, and can therefore reflect changes in the field (gradient switching, RF) or in the circuit geometry or position relative to the field due to body motion (Lemieux et al. 1997). Therefore, the combination of body motion with image acquisition artefacts can lead to random variations that represent a real challenge for artefact correction.



Adaptive noise cancellation


FMRI artefact slice template removal


Fourier transform


Imaging artefact reduction


Independent component analysis




Low-pass filter


Principal component analysis




Signal-to-noise ratio


Template drift compensation


Template drift detection


  1. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12(2):230–239PubMedCrossRefGoogle Scholar
  2. Anami K, Mori T, Tanaka F, Kawagoe Y, Okamoto J, Yarita M, Ohnishi T, Yumoto M, Matsuda H, Saitoh O (2003) Stepping stone sampling for retrieving artifact-free electroencephalogram during functional magnetic resonance imaging. Neuroimage 19(2 Pt 1):281–295PubMedCrossRefGoogle Scholar
  3. Baudewig J, Bittermann HJ, Paulus W, Frahm J (2001) Simultaneous EEG and functional MRI of epileptic activity: a case report. Clin Neurophysiol, 112: 1196–200PubMedCrossRefGoogle Scholar
  4. Becker R, Ritter P, Moosmann M, Villringer A (2005) Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp 26(3):221–230PubMedCrossRefGoogle Scholar
  5. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159PubMedCrossRefGoogle Scholar
  6. Benar C, Aghakhani Y, Wang Y, Izenberg A, Al Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG–fMRI for epilepsy. Clin Neurophysiol 114(3):569–580PubMedCrossRefGoogle Scholar
  7. Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C (1999) Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med 41(4):715–721PubMedCrossRefGoogle Scholar
  8. Freyer F, Becker R, Anami K, Curio G, Villringer A, Ritter P. Ultrahigh-frequency EEG during fMRI: Pushing the limits of imaging-artifact correction. Neuroimage, 2009Google Scholar
  9. Garreffa G, Carni M, Gualniera G, Ricci GB, Bozzao L, De Carli D, Morasso P, Pantano P, Colonnese C, Roma V, et al. (2003) Real-time MR artifacts filtering during continuous EEG/fMRI acquisition. Magn Reson Imaging 21(10):1175–1189PubMedCrossRefGoogle Scholar
  10. Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56(6):1127–1134PubMedCrossRefGoogle Scholar
  11. Goldman RI, Stern JM, Engel J Jr., Cohen MS (2000) Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol 111(11):1974–1980PubMedCrossRefGoogle Scholar
  12. Goldman RI, Stern JM, Engel J, Jr., Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13: 2487–92PubMedCrossRefGoogle Scholar
  13. Goncalves SI, de Munck JC, Pouwels PJ, Schoonhoven R, Kuijer JP, Maurits NM, Hoogduin JM, Van Someren EJ, Heethaar RM, Lopes da Silva FH. (2005) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability. Neuroimage Google Scholar
  14. Grouiller F, Vercueil L, Krainik A, Segebarth C, Kahane P, David O (2007) A comparative study of different artefactartefact removal algorithms for EEG signals acquired during functional MRI. Neuroimage 38(1):124–137PubMedCrossRefGoogle Scholar
  15. Hanson LG, Lund TE, Hanson CG (2007) Encoding of electrophysiology and other signals in MR images. J Magn Reson Imaging 25(5):1059–1066PubMedCrossRefGoogle Scholar
  16. Hill RA, Chiappa KH, Huang-Hellinger F, Jenkins BG (1995) EEG during MR imaging: differentiation of movement artifact from paroxysmal cortical activity. Neurology, 45: 1942–3PubMedCrossRefGoogle Scholar
  17. Hoffmann A, Jager L, Werhahn KJ, Jaschke M, Noachtar S, Reiser M (2000) Electro­encephalography during functional echo-planar imagingecho-planar imaging: detection of epileptic spikes using post-processing methods. Magn Reson Med 44(5):791–798PubMedCrossRefGoogle Scholar
  18. Horovitz SG, Rossion B, Skudlarski P, Gore JC (2004) Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing. Neuroimage., 22: 1587–95PubMedCrossRefGoogle Scholar
  19. Horovitz SG, Skudlarski P, Gore JC (2002) Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magn Reson.Imaging, 20: 319–25PubMedCrossRefGoogle Scholar
  20. Huang-Hellinger FR, Breiter HC, McCormack GM, Cohen MS, Kwong KK, Savoy RL, Weisskoff RM, Davis TL, Baker JR, Belliveau JW, et al. (1995) Simultaneous functional magnetic resonance imaging and electrophysiological recording. Human Brain Mapp 3:13–23CrossRefGoogle Scholar
  21. Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw, 10: 626–34PubMedCrossRefGoogle Scholar
  22. Iannetti GD, Niazy RK, Wise RG, Jezzard P, Brooks JC, Zambreanu L, Vennart W, Matthews PM, Tracey I (2005) Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. Neuroimage 28(3):708–719PubMedCrossRefGoogle Scholar
  23. Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr. Clin. Neurophysiol 87: 417–20PubMedCrossRefGoogle Scholar
  24. Krakow K, Woermann FG, Symms MR, Allen PJ, Lemieux L, Barker GJ, Duncan JS, Fish DR (1999) EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain, 122: 1679–88PubMedCrossRefGoogle Scholar
  25. Kruggel F, Wiggins CJ, Herrmann CS, von Cramon DY (2000) Recording of the event-related potentials during functional MRI at 3.0 Tesla field strength. Magn Reson.Med., 44: 277–82PubMedCrossRefGoogle Scholar
  26. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage., 19: 1463–76PubMedCrossRefGoogle Scholar
  27. Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38(6):943–952PubMedCrossRefGoogle Scholar
  28. Lemieux L, Krakow K, Fish DR (2001) Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization. Neuroimage 14: 1097–104PubMedCrossRefGoogle Scholar
  29. Mandelkow H, Halder P, Boesiger P, Brandeis D (2006) Synchronization facilitates removal of MRI artefacts from concurrent EEG recordings and increases usable bandwidth. Neuroimage 32(3):1120–1126PubMedCrossRefGoogle Scholar
  30. Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C (2007) Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34(2):598–607PubMedCrossRefGoogle Scholar
  31. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage, 20: 145–58PubMedCrossRefGoogle Scholar
  32. Negishi M, Abildgaard M, Nixon T, Constable RT (2004) Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin Neurophysiol 115(9):2181–2192PubMedCrossRefGoogle Scholar
  33. Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM (2005) Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28(3):720–737PubMedCrossRefGoogle Scholar
  34. Opitz B, Mecklinger A, Von Cramon DY, Kruggel F (1999) Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology, 36: 142–7PubMedCrossRefGoogle Scholar
  35. Ritter P, Becker R, Graefe C, Villringer A (2007) Evaluating gradientgradient artifact correction of EEG data acquired simultaneously with fMRI. Magn Reson Imaging 25(6):923–932PubMedCrossRefGoogle Scholar
  36. Ritter P, Freyer F, Becker R, Anami K, Curio G, Villringer A (2006) Recording of ultrafast (600 Hz) EEG oscillations with amplitudes in the nanovolt range during fMRI-acquisition periods. 14th Scientific Meeting ISMRM, Seattle, WA, USA, 6–12 May 2006Google Scholar
  37. Ritter P, Freyer F, Curio G, Villringer A (2008a) High frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. Neuroimage 42(2):483–490PubMedCrossRefGoogle Scholar
  38. Ritter P, Moosmann M, Villringer A (2008b) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30(4):1168–1187CrossRefGoogle Scholar
  39. Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR (2003) Functional magnetic resonance imaging of human absence seizures. Ann.Neurol, 53: 663-7PubMedCrossRefGoogle Scholar
  40. Salek-Haddadi A, Merschhemke M, Lemieux L, Fish DR (2002) Simultaneous EEG-Correlated Ictal fMRI. Neuroimage, 16: 32–40PubMedCrossRefGoogle Scholar
  41. Schmid MC, Oeltermann A, Juchem C, Logothetis NK, Smirnakis SM (2006) Simultaneous EEG and fMRI in the macaque monkey at 4.7 Tesla. Magn Reson.Imaging., 24: 335–42PubMedCrossRefGoogle Scholar
  42. Schubert R, Ritter P, Wustenberg T, Preuschhof C, Curio G, Sommer W, Villringer A (2008) Spatial attention related SEP amplitude modulations covary with BOLD signal in S1–a simultaneous EEG–fMRI study. Cereb Cortex, 18: 2686–700Google Scholar
  43. Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke CA, Ives J, Delavelle J, Golay X, Haenggeli CA, de Tribolet N, Landis T (1998) Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr.Clin.Neurophysiol 106: 508–12CrossRefGoogle Scholar
  44. Sijbers J, Michiels I, Verhoye M, Van Audekerke J, Van der LA, Van Dyck D (1999) Restoration of MR-induced artifacts in simultaneously recorded MR/EEG data. Magn Reson Imaging 17(9):1383–1391PubMedCrossRefGoogle Scholar
  45. Symms MR, Allen PJ, Woermann FG, Polizzi G, Krakow K, Barker GJ, Fish DR, Duncan JS (1999) Reproducible localization of interictal epileptiform discharges using EEG-triggered fMRI. Phys.Med.Biol., 44: N161–N8PubMedCrossRefGoogle Scholar
  46. Sommer M, Meinhardt J, Volz HP (2003) Combined measurement of event-related potentials (ERPs) and fMRI. Acta Neurobiol.Exp.(Wars.), 63: 49–53Google Scholar
  47. Van Audekerkea J, Peeters R, Verhoye M, Sijbers J, Van der LA (2000) Special designed RF-antenna with integrated non-invasive carbon electrodes for simultaneous magnetic resonance imaging and electroencephalography acquisition at 7T. Magn Reson Imaging 18(7):887–891PubMedCrossRefGoogle Scholar
  48. Warach S, Ives JR, Schlaug G, Patel MR, Darby DG, Thangaraj V, Edelman RR, Schomer DL (1996) EEG-triggered echo-planar functional MRI in epilepsy. Neurology, 47: 89–93PubMedCrossRefGoogle Scholar
  49. Wan X, Iwata K, Riera J, Kitamura M, Kawashima R (2006) Artifact reduction for simultaneous EEG/fMRI recording: adaptive FIR reduction of imaging artifacts. Clin Neurophysiol 117(3):681–692PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Petra Ritter
    • 1
  • Robert Becker
  • Frank Freyer
  • Arno Villringer
  1. 1.Department of NeurologyCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations