Advertisement

Ligands for Ionotropic Glutamate Receptors

  • Geoffrey T. Swanson
  • Ryuichi Sakai
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 46)

Abstract

Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

Keywords

NMDA Receptor Glutamate Receptor AMPA Receptor Excitatory Amino Acid Kainic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aamodt SM, Constantine-Paton M (1999) The role of neural activity in synaptic development and its implications for adult brain function. Adv Neurol 79:133–144.Google Scholar
  2. Agrawal SG, Evans RH (1986) The primary afferent depolarizing action of kainate in the rat. Br J Pharmacol 87:345–355.Google Scholar
  3. Alt A, Weiss B, Ornstein PL, Gleason SD, Bleakman D, Stratford RE, Jr., Witkin JM (2007) Anxiolytic-like effects through a GLU(K5) kainate receptor mechanism. Neuropharmacology 52:1482–1487.Google Scholar
  4. Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197:1267–1276.Google Scholar
  5. Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395:913–917.Google Scholar
  6. Ashworth TS, Brown EG, Roberts FM (1972) Biosynthesis of willardiine and isowillardiine in germinating pea seeds and seedlings. Biochem J 129:897–905.Google Scholar
  7. Awobuluyi M, Yang J, Ye Y, Chatterton JE, Godzik A, Lipton SA, Zhang D (2007) Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors. Mol Pharmacol 71:112–122.Google Scholar
  8. Bahn S, Volk B, Wisden W (1994) Kainate receptor gene expression in the developing rat brain. J Neurosci 14:5525–5547.Google Scholar
  9. Bargu S, Powell CL, Coale SL, Busman M, Doucette GJ, Silver MW (2002) Krill: a potential vector for domoic acID in marine food webs. Mar Ecol Prog Ser 237:209–216.Google Scholar
  10. Bargu S, Lefebvre K, Silver MW (2006) Effect of dissolved domoic acID on the grazing rate of krill Euphausia pacifica. Mar Ecol Prog Ser 312:169–175.Google Scholar
  11. Barton ME, Peters SC, Shannon HE (2003) Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Res 56:17–26.Google Scholar
  12. Barton ME, White HS, Wilcox KS (2004) The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on NMDA receptor-mediated EPSCs. Epilepsy Res 59:13–24.Google Scholar
  13. Bates SS (2000) Domoic-acID-producing diatoms: another genus added! J Phycol 36:978–983.Google Scholar
  14. Bates SS, Bird CJ, Defreitas ASW, Foxall R, Gilgan M, Hanic LA, Johnson GR, McCulloch AW, Odense P, Pocklington R, Quilliam MA, Sim PG, Smith JC, Rao DVS, Todd ECD, Walter JA, Wright JLC (1989) Pennate diatom Nitzschia-Pungens as the primary source of domoic acID, atoxin in shellfish from eastern Prince Edward Island, Canada. Can J Fish Aquat Sci 46:1203–1215.Google Scholar
  15. Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acID: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403.Google Scholar
  16. Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587.Google Scholar
  17. Bettler B, Boulter J, Hermans-Borgmeyer I, O'Shea-Greenfield A, Deneris ES, Moll C, Borgmeyer U, Hollmann M, Heinemann S (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5:583–595.Google Scholar
  18. Bettler B, Egebjerg J, Sharma G, Pecht G, Hermans-Borgmeyer I, Moll C, Stevens CF, Heinemann S (1992) Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 8:257–265.Google Scholar
  19. Bill BD, Cox FH, Horner RA, Borchert JA, Trainer VL (2006) The first closure of shellfish harvesting due to domoic acID in Puget Sound, Washington, USA. Afr J Mar Sci 28:435–440.Google Scholar
  20. Blagbrough IS, Moya E, Taylor S (1994) Polyamines and polyamine amIDes from wasps and spIDers. Biochem Soc Trans 22:888–893.Google Scholar
  21. Bleakman D, Alt A, Nisenbaum ES (2006) Glutamate receptors and pain. Semin Cell Dev Biol 17:592–604.Google Scholar
  22. Bliss T V, CollingrIDge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.Google Scholar
  23. Bortolotto ZA, Clarke VR, Delany CM, Parry MC, Smolders I, Vignes M, Ho KH, Miu P, Brinton BT, Fantaske R, Ogden A, Gates M, Ornstein PL, Lodge D, Bleakman D, CollingrIDge GL (1999) Kainate receptors are involved in synaptic plasticity. Nature 402:297–301.Google Scholar
  24. Bruce M, Bukownik R, Eldefrawi AT, Eldefrawi ME, Goodnow R, Jr., Kallimopoulos T, Konno K, Nakanishi K, Niwa M, Usherwood PN (1990) Structure-activity relationships of analogues of the wasp toxin philanthotoxin: non-competitive antagonists of quisqualate receptors. Toxicon 28:1333–1346.Google Scholar
  25. Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recom-binant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol (Lond) 485:403–418.Google Scholar
  26. Calaf R, Barlatier A, Garçon D, Balansard G, Pellegrini M, Reynaud J (1989) Isolation of an unknown kainic peptIDe from the red alga AlsIDium helminthocorton. J Appl Phycol 1:257–266.Google Scholar
  27. Cantrell BE, Zimmerman DM, Monn JA, Kamboj RK, Hoo KH, Tizzano JP, Pullar IA, Farrell LN, Bleakman D (1996) Synthesis of a series of aryl kainic acID analogs and evaluation in cells stably expressing the kainate receptor humGluR6. J Med Chem 39:3617–3624.Google Scholar
  28. Castillo PE, Malenka RC, Nicoll RA (1997) Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388:182–186.Google Scholar
  29. Cendes F, Andermann F, Carpenter S, Zatorre RJ, Cashman NR (1995) Temporal lobe epilepsy caused by domoic acID intoxication: evIDence for glutamate receptor-mediated excitotoxicity in humans. Ann Neurol 37:123–126.Google Scholar
  30. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798.Google Scholar
  31. Chiamulera C, Costa S, Valerio E, Reggiani A (1992) Domoic acID toxicity in rats and mice after intracerebroventricular administration: comparison with excitatory amino acID agonists. Pharmacol Toxicol 70:115–120.Google Scholar
  32. Clark RB, Donaldson PL, Gration KA, Lambert JJ, Piek T, Ramsey R, Spanjer W, Usherwood PN (1982) Block of locust muscle glutamate receptors by delta-philanthotoxin occurs after receptor activations. Brain Res 241:105–114.Google Scholar
  33. Clark RF, Williams SR, Nordt SP, Manoguerra AS (1999) A review of selected seafood poisonings. Undersea Hyperb Med 26:175–184.Google Scholar
  34. Clayden J, Read B, Hebditch KR (2005) Chemistry of domoic acID, isodomoic acIDs, and their analogues. Tetrahedron 61:5713–5724.Google Scholar
  35. Cohen JL, Limon A, Miledi R, Chamberlin AR (2006) Design, synthesis, and biological evaluation of a scaffold for iGluR ligands based on the structure of (−)-dysiherbaine. Bioorg Med Chem Lett 16:2189–2194.Google Scholar
  36. Contractor A, Swanson GT, Sailer A, O'Gorman S, Heinemann SF (2000) IDentification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J Neurosci 20:8269–8278.Google Scholar
  37. Contractor A, Swanson GT, Heinemann SF (2001) Kainate receptors are involved in short and long term plasticity at mossy fiber synapses in the hippocampus. Neuron 29:209–216.Google Scholar
  38. Contractor A, Sailer AW, Darstein M, Maron C, Xu J, Swanson GT, Heinemann SF (2003) Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2-/-mice. J Neurosci 23:422–429.Google Scholar
  39. Cusack CK, Bates SS, Quilliam MA, Patching JW, Raine R (2002) Confirmation of domoic acID production by Pseudo-nitzschia australis (bacillariophyceae) isolated from Irish waters. J Phycol 38:1106–1112.Google Scholar
  40. D'Aniello A, Spinelli P, De Simone A, D'Aniello S, Branno M, Aniello F, Fisher GH, Di Fiore MM, Rastogi RK (2003) Occurrence and neuroendocrine role of D-aspartic acID and N-methyl-D-aspartic acID in Ciona intestinalis. FEBS Lett 552:193–198.Google Scholar
  41. Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, Norris J (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31:347–354.Google Scholar
  42. Debonnel G, Beauchesne L, de Montigny C (1989) Domoic acID, the alleged “mussel toxin,” might produce its neurotoxic effect through kainate receptor activation: an electrophysiologi-cal study in the dorsal hippocampus. Can J Physiol Pharmacol 67:29–33.Google Scholar
  43. Dingledine R, Hume RI, Heinemann SF (1992) Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels. J Neurosci 12:4080–4087.Google Scholar
  44. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–62.Google Scholar
  45. Donevan SD, McCabe RT (2000) Conantokin G is an NR2B-selective competitive antagonist of N-methyl-D-aspartate receptors. Mol Pharmacol 58:614–623.Google Scholar
  46. Dudek FE, Clark S, Williams PA, Grabenstatter HL (2006) Kainate-induced Status Epilepticus: a chronic model of acquired epilepsy. In: Models of Seizures and Epilepsy (Pitkänen A, Schwartzkroin PA, Moshé SL, eds.). Burlington, MA: Elsevier Academic Press.Google Scholar
  47. Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351:745–748.Google Scholar
  48. Estrada G, Villegas E, Corzo G (2007) SpIDer venoms: a rich source of acylpolyamines and pep-tIDes as new leads for CNS drugs. Nat Prod Rep 24:145–161.Google Scholar
  49. Evans ML, Usherwood PN (1985) The effect of lectins on desensitisation of locust muscle gluta-mate receptors. Brain Res 358:34–39.Google Scholar
  50. Evans S V, Shing TKM, Aplin RT, Fellows LE, Fleet GWJ (1985) Sulphate ester of trans-4-hydroxypipecolic acID in seeds of Peltophorum. Phytochemistry 24:2593–2596.Google Scholar
  51. Fehling J, Green DH, DavIDson K, Bolch CJ, Bates SS (2004) Domoic acID production by Pseudo-nitzschia seriata (bacillariophyceae) in Scottish waters. J Phycol 40:622–630.Google Scholar
  52. Fisahn A, Heinemann SF, McBain CJ (2005) The kainate receptor subunit GluR6 mediates metabotropic regulation of the slow and medium AHP currents in mouse hippocampal neurones. J Physiol 562:199–203.Google Scholar
  53. Frerking M, Ohliger-Frerking P (2002) AMPA receptors and kainate receptors encode different features of afferent activity. J Neurosci 22:7434–7443.Google Scholar
  54. Frerking M, Schmitz D, Zhou Q, Johansen J, Nicoll RA (2001) Kainate receptors depress excitatory synaptic transmission at CA3- > CA1 synapses in the hippocampus via a direct presynap-tic action. J Neurosci 21:2958–2966.Google Scholar
  55. Fritz L, Quilliam MA, Wright JLC, Beale AM, Work TM (1992) An outbreak of domoic acID and poisoning attributed to the pennate diatom Pseudonitzschia australius. J Phycol 28:438–442.Google Scholar
  56. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438:185–192.Google Scholar
  57. Garateix A, Flores A, Garcia-Andrade JM, Palmero A, Aneiros A, Vega R, Soto E (1996) Antagonism of glutamate receptors by a chromatographic fraction from the exudate of the sea anemone Phyllactis flosculifera. Toxicon 34:443–450.Google Scholar
  58. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204.Google Scholar
  59. Gereau RW, Swanson GT, eds. (2008) The Glutamate Receptors. Totawa, NJ: Humana Press.Google Scholar
  60. Gmelin R (1959) The free amino acIDs in the seeds of Acacia willardiana (Mimosaceae). Isolation of willardiin, a new plant amino acID which is probably L-beta-(3-uracil)-alpha-aminopropionic acID. Hoppe Seylers Z Physiol Chem 316:164–169.Google Scholar
  61. Goldstein T, Mazet JA, Zabka TS, Langlois G, Colegrove KM, Silver M, Bargu S, Van Dolah F, Leighfield T, Conrad PA, Barakos J, Williams DC, Dennison S, Haulena M, Gulland FM (2008) Novel symptomatology and changing epIDemiology of domoic acID toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc Biol Sci 275(1632):267–276.Google Scholar
  62. Gondran M, Eckeli AL, Migues PV, Gabilan NH, Rodrigues AL (2002) The crude extract from the sea anemone, Bunodosoma caissarum elicits convulsions in mice: possible involvement of the glutamatergic system. Toxicon 40:1667–1674.Google Scholar
  63. Greger IH, Esteban JA (2007) AMPA receptor biogenesis and trafficking. Curr Opin Neurobiol 17:289–297.Google Scholar
  64. Gross H, Goeger DE, Hills P, Mooberry SL, Ballantine DL, Murray TF, Valeriote FA, Gerwick WH (2006) Lophocladines, bioactive alkaloIDs from the red alga Lophocladia sp. J Nat Prod 69:640–644.Google Scholar
  65. Haack JA, Rivier J, Parks TN, Mena EE, Cruz LJ, Olivera BM (1990) Conantokin-T. A gamma-carboxyglutamate containing peptIDe with N-methyl-d-aspartate antagonist activity. J Biol Chem 265:6025–6029.Google Scholar
  66. Hammerland LG, Olivera BM, Yoshikami D (1992) Conantokin-G selectively inhibits N-methyl-d-aspartate-induced currents in Xenopus oocytes injected with mouse brain mRNA. Eur J Pharmacol 226:239–244.Google Scholar
  67. Hampson DR, Manalo JL (1998) The activation of glutamate receptors by kainic acID and domoic acID. Nat Toxins 6:153–158.Google Scholar
  68. Hampson DR, Huang XP, Wells JW, Walter JA, Wright JL (1992) Interaction of domoic acID and several derivatives with kainic acID and AMPA binding sites in rat brain. Eur J Pharmacol 218:1–8.Google Scholar
  69. Hardy RW, Scott TM, Hatfield CL, Barnett HJ, Gauglitz EJ, Wekell JC, Eklund MW (1995) Domoic acID in rainbow trout (Oncorhynchus mykiss) feeds. Aquaculture 131:253–260.Google Scholar
  70. Hart AC, Sims S, Kaplan JM (1995) Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378:82–85.Google Scholar
  71. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267.Google Scholar
  72. Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH (1992) The KA-2 subunit of excitatory amino acID receptors shows wIDespread expression in brain and forms ion channels with distantly related subunits. Neuron 8:775–785.Google Scholar
  73. Hirano T (2006) Cerebellar regulation mechanisms learned from studies on GluRdelta2. Mol Neurobiol 33:1–16.Google Scholar
  74. Holland PT, Selwood AI, Mountfort DO, Wilkins AL, McNabb P, Rhodes LL, Doucette GJ, Mikulski CM, King KL (2005) Isodomoic acID C, an unusual amnesic shellfish poisoning toxin from Pseudo-nitzschia australis. Chem Res Toxicol 18:814–816.Google Scholar
  75. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108.Google Scholar
  76. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA gated glutamate receptor channels depends on subunit composition. Science 252:851–853.Google Scholar
  77. Huettner JE (1990) Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5:255–266.Google Scholar
  78. Huettner JE (2003) Kainate receptors and synaptic transmission. Prog Neurobiol 70:387–407.Google Scholar
  79. Iino M, Koike M, Isa T, Ozawa S (1996) Voltage-dependent blockage of Ca(2+) permeable AMPA receptors by joro spider toxin in cultured rat hippocampal neurones. J Physiol 496:431–437.Google Scholar
  80. Impellizzeri G, Mangiafico S, Oriente G, Piattelli M, Sciuto S, Fattorusso E, Magno S, Santacroce C, Sica D (1975) Amino acids and low-molecularweight carbohydrates of some marine red algae. Phytochemistry 14:1549–1557.Google Scholar
  81. Iverson F, Truelove J (1994) Toxicology and seafood toxins: domoic acid. Nat Toxins 2:334–339.Google Scholar
  82. Jaskolski F, Coussen F, Mulle C (2005) Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 26:20–26.Google Scholar
  83. Jeffery B, Barlow T, Moizer K, Paul S, Boyle C (2004) Amnesic shellfish poison. Food Chem Toxicol 42:545–557.Google Scholar
  84. Jiang L, Xu J, Nedergaard M, Kang J (2001) A kainate receptor increases the efficacy of GABAergic synapses. Neuron 30:503–513.Google Scholar
  85. Jimenez EC, Donevan S, Walker C, Zhou LM, Nielsen J, Cruz LJ, Armstrong H, White HS, Olivera BM (2002) Conantokin-L, a new NMDA receptor antagonist: determinants for anti-convulsant potency. Epilepsy Res 51:73–80.Google Scholar
  86. Jin XT, Pare JF, Raju DV, Smith Y (2006) Localization and function of pre- and postsynaptic kain-ate receptors in the rat globus pallidus. Eur J Neurosci 23:374–386.Google Scholar
  87. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531.Google Scholar
  88. Johnston GA, Kennedy SM, Twitchin B (1979) Action of the neurotoxin kainic acid on high affinity uptake of l-glutamic acid in rat brain slices. J Neurochem 32:121–127.Google Scholar
  89. Kamiya H, Ozawa S (1998) Kainate receptor-mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus. J Physiol (Lond) 509:833–845.Google Scholar
  90. Kamiya H, Ozawa S (2000) Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. J Physiol (Lond) 523:653–665.Google Scholar
  91. Klein RC, Prorok M, Galdzicki Z, Castellino FJ (2001) The amino acid residue at sequence position 5 in the conantokin peptides partially governs subunit-selective antagonism of recombinant N-methyl-d-aspartate receptors. J Biol Chem 276:26860–26867.Google Scholar
  92. Konno K, Hashimoto K, Ohfune Y, Shirahama H, Matsumoto T (1988) Acromelic acids A and B. Potent neuroexcitatory amino acids isolated from Clitocybe acromelalga. J Am Chem Soc 110:4807–4815.Google Scholar
  93. Kotaki Y, Koike K, Sato S, Ogata T, Fukuyo Y, Kodama M (1999) Confirmation of domoic acid production of Pseudo-nitzschia multiseries isolated from Ofunato Bay, Japan. Toxicon 37:677–682.Google Scholar
  94. Kotaki Y, Koike K, Yoshida M, Van Thuoc C, Huyen NTM, Hoi NC, Fukuyo Y, Kodama M (2000) Domoic acid production in Nitzschia sp (Bacillariophyceae) isolated from a shrimp-culture pond in Do Son, Vietnam. J Phycol 36:1057–1060.Google Scholar
  95. Kotaki Y, Lundholm N, Onodera H, Kobayashi K, Bajarias FFA, Furio EF, Iwataki M, Fukuyo Y, Kodama M (2004) Wide distribution of Nitzschia navis-varingica, a new domoic acid-producing benthic diatom found in Vietnam. Fish Sci 70:28–32.Google Scholar
  96. Kung SS, Wu YM, Chow WY (1996) Characterization of two fish glutamate receptor cDNA molecules: absence of RNA editing at the Q/R site. Brain Res Mol Brain Res 35:119–130.Google Scholar
  97. Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291–1300.Google Scholar
  98. Lash LL, Sanders JM, Akiyama N, Shoji M, Postila P, Pentikainen OT, Sasaki M, Sakai R, Swanson GT (2007) Novel analogs and stereoisomers of the marine toxin neodysiherbaine with specificity for kainate receptors. J Pharmacol Exp Ther 324:484–496.Google Scholar
  99. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18:493–503.Google Scholar
  100. Lauri SE, Bortolotto ZA, Bleakman D, Ornstein PL, Lodge D, Isaac JT, Collingridge GL (2001) A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 32:697–709.Google Scholar
  101. Laycock M V, de Freitas ASW, Wright JLC (1989) Glutamate agonists from marine algae. J Appl Phycol 1:113–122.Google Scholar
  102. Layer RT, Wagstaff JD, White HS (2004) Conantokins: peptide antagonists of NMDA receptors. Curr Med Chem 11:3073–3084.Google Scholar
  103. Lefebvre KA, Powell CL, Busman M, Doucette GJ, Moeller PD, Silver JB, Miller PE, Hughes MP, Singaram S, Silver MW, Tjeerdema RS (1999) Detection of domoic acid in northern anchovies and California sea lions associated with an unusual mortality event. Nat Toxins 7:85–92.Google Scholar
  104. Lefebvre KA, Dovel SL, Silver MW (2001) Tissue distribution and neurotoxic effects of domoic acid in a prominent vector species, the northern anchovy Engraulis mordax. Marine Biology 138:693–700.Google Scholar
  105. Lefebvre KA, Bargu S, Kieckhefer T, Silver MW (2002a) From sanddabs to blue whales: the pervasiveness of domoic acid. Toxicon 40:971–977.Google Scholar
  106. Lefebvre KA, Silver MW, Coale SL, Tjeerdema RS (2002b) Domoic acid in planktivorous fish in relation to toxic Pseudo-nitzschia cell densities. Marine Biology 140:625–631.Google Scholar
  107. Lefebvre KA, Noren DP, Schultz IR, Bogard SM, Wilson J, Eberhart BT (2007) Uptake, tissue distribution and excretion of domoic acid after oral exposure in coho salmon (Oncorhynchus kisutch). Aquat Toxicol 81:266–274.Google Scholar
  108. Lehmann J, Hutchison AJ, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DE, Steel DJ, Williams M, et al. (1988) CGS 19755, a selective and competitive N-methyl-d-aspartate-type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246:65–75.Google Scholar
  109. Lerma J (2006) Kainate receptor physiology. Curr Opin Pharmacol 6:89–97.Google Scholar
  110. Lomeli H, Wisden W, Köhler M, Keinänen K, Sommer B, Seeburg PH (1992) High-affinity kainate and domoate receptors in rat brain. FEBS Lett 307:139–143.Google Scholar
  111. Lomeli H, Sprengel R, Laurie DJ, Kohr G, Herb A, Seeburg PH, Wisden W (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315:318–322.Google Scholar
  112. Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713.Google Scholar
  113. Loscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123.Google Scholar
  114. Lundholm N, Moestrup Ø (2000) Morphology of the marine diatom Nitzschia navis-varingica, sp. Nov. (bacillariophyceae), another producer of the neurotoxin domoic acid. J Phycol 36:1162–1174.Google Scholar
  115. Lundholm N, Hansen PJ, Kotaki Y (2005) Lack of allelopathic effects of the domoic acid-producing marine diatom Pseudo-nitzschia multiseries. Mar Ecol Prog Ser 288:21–33.Google Scholar
  116. Lygo B, Slack D, Wilson C (2005) Synthesis of neodysiherbaine. Tetrahedron Lett 46:6629–6632.Google Scholar
  117. Lynch G, Gall CM (2006) Ampakines and the threefold path to cognitive enhancement. Trends Neurosci 29:554–562.Google Scholar
  118. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522.Google Scholar
  119. Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101.Google Scholar
  120. Maeda M, Kodama T, Tanaka T, Yoshizumi H, Takemoto T, Nomoto K, Fujita T (1986) Structures Of isodomoic acid-A, acid-B And acid-C, novel insecticidal amino-acids from the red alga Chondria armata. Chem Pharm Bull 34:4892–4895.Google Scholar
  121. Maeda M, Kodama T, Tanaka T, Yoshizumi H, Takemoto T, Nomoto K, Fujita T (1987) Structures of domoilactone A and B, novel amino acids from the red alga. Tetrahedron Lett 28:633–636.Google Scholar
  122. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213.Google Scholar
  123. Malmberg AB, Gilbert H, McCabe RT, Basbaum AI (2003) Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 101:109–116.Google Scholar
  124. Maricq AV, Peckol E, Driscoll M, Bargmann CI (1995) Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378:78–81.Google Scholar
  125. Masaki H, Maeyama J, Kamada K, Esumi T, Iwabuchi Y, Hatakeyama S (2000) Total synthesis of (−)-dysiherbaine. J Am Chem Soc 122:5216–5217.Google Scholar
  126. Mayer ML (2005) Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying Kainate receptor selectivity. Neuron 45:539–552.Google Scholar
  127. Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527.Google Scholar
  128. Mayer ML, Benveniste M, Patneau DK, Vyklicky L, Jr. (1992) Pharmacologic properties of NMDA receptors. Ann N Y Acad Sci 648:194–204.Google Scholar
  129. McCormick J, Li Y, McCormick K, Duynstee HI, van Engen AK, van der Marel GA, Ganem B, van Boom JH, Meinwald J (1999) Structure and total synthesis of HF-7, a neuroactive glyconucle-oside disulfate from the funnel-web spider Hololena curta. J Am Chem Soc 121:5661–5665.Google Scholar
  130. McIntosh JM, Olivera BM, Cruz LJ, Gray WR (1984) Gamma-carboxyglutamate in a neuroactive toxin. J Biol Chem 259:14343–14346.Google Scholar
  131. Melyan Z, Wheal HV, Lancaster B (2002) Metabotropic-mediated kainate receptor regulation of Isahp and excitability in pyramidal cells. Neuron 34:107–114.Google Scholar
  132. Melyan Z, Lancaster B, Wheal HV (2004) Metabotropic regulation of intrinsic excitability by synaptic activation of kainate receptors. J Neurosci 24:4530–4534.Google Scholar
  133. Mena EE, Gullak MF, Pagnozzi MJ, Richter KE, Rivier J, Cruz LJ, Olivera BM (1990) Conantokin-G: a novel peptide antagonist to the N-methyl-daspartic acid (NMDA) receptor. Neurosci Lett 118:241–244.Google Scholar
  134. Moloney MG (1998) Excitatory amino acids. Nat Prod Rep 15:205–219.Google Scholar
  135. Moloney MG (1999) Excitatory amino acids. Nat Prod Rep 16:485–498.Google Scholar
  136. Moloney MG (2002) Excitatory amino acids. Nat Prod Rep 19:597–616.Google Scholar
  137. Moroni F, Galli A, Mannaioni G, Carla V, Cozzi A, Mori F, Marinozzi M, Pellicciari R (1995) NMDA receptor heterogeneity in mammalian tissues: focus on two agonists, (2S,3R,4S) cyclo-propylglutamate and the sulfate ester of 4-hydroxy-(S)-pipecolic acid. Naunyn Schmiedebergs Arch Pharmacol 351:371–376.Google Scholar
  138. Mos L (2001) Domoic acid: a fascinating marine toxin. Environ Toxicol Pharmacol 9:79–85.Google Scholar
  139. Mulle C, Sailer A, Pérez-Otaño I, Dickinson-Anson H, Castillo PE, Bureau I, Maron C, Gage FH, Mann JR, Bettler B, Heinemann SF (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392:601–605.Google Scholar
  140. Mulle C, Sailer A, Swanson GT, Brana C, O'Gorman S, Bettler B, Heinemann SF (2000) Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28:475–484.Google Scholar
  141. Murakami S, Takemoto T, Shimizu Z (1953) Studies on the effective principles of Digenea simplex Aq. I. Separation of the effective fraction by liquid chromatography. J Pharm Soc Jpn 73:1026–1028.Google Scholar
  142. Nadler JV (1979) Kainic acid: neurophysiological and neurotoxic actions. Life Sci 24:289–299.Google Scholar
  143. Nadler JV (1981) Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 29:2031–2042.Google Scholar
  144. Naur P, Vestergaard B, Skov LK, Egebjerg J, Gajhede M, Kastrup JS (2005) Crystal structure of the kainate receptor GluR5 ligand-binding core in complex with (S)-glutamate. FEBS Lett 579:1154–1160.Google Scholar
  145. Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, Vestergaard B, Egebjerg J, Gajhede M, Traynelis SF, Kastrup JS (2007) Ionotropic glutamate-like receptor delta2 binds d-serine and glycine. Proc Natl Acad Sci USA 104:14116–14121.Google Scholar
  146. Nawy S, Copenhagen DR (1987) Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature 325:56–58.Google Scholar
  147. Nicoll RA, Malenka RC (1999) Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci 868:515–525.Google Scholar
  148. Nitta I, Watase H, Tomiie Y (1958) Structure of kainic acid and its isomer, allokainic acid. Nature 181:761–762.Google Scholar
  149. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465.Google Scholar
  150. Olivera BM (2006) Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem 281:31173–31177.Google Scholar
  151. Olney JW (1994) Excitotoxins in foods. Neurotoxicology 15:535–544.Google Scholar
  152. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47.Google Scholar
  153. Paternain AV, Morales M, Lerma J (1995) Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14:185–189.Google Scholar
  154. Paternain AV, Vicente A, Nielsen EO, Lerma J (1996) Comparative antagonism of kainate-activated kainate and AMPA receptors in hippocampal neurons. Eur J Neurosci 8:2129–2136.Google Scholar
  155. Pei-Gen X, Shan-Lin F (1986) Traditional antiparasitic drugs in China. Parasitol Today 2:353–355.Google Scholar
  156. Perez-Otaño I, Ehlers MD (2004) Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13:175–189.Google Scholar
  157. Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd EC, McNutt LA, Remis RS (1990a) Amnesic shellfish poisoning: a new clinical syndrome due to domoic acid. Can Dis Wkly Rep 16 (Suppl. 1E):7–8.Google Scholar
  158. Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd EC, Remis RS (1990b) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322:1775–1780.Google Scholar
  159. Perovic S, Wickles A, Schutt C, Gerdts G, Pahler S, Steffen R, Muller WEG (1998) Neuroactive compounds produced by bacteria from the marine sponge Halichondria panicea: activation of the neuronal NMDA receptor. Environ Toxicol Pharmacol 6:125–133.Google Scholar
  160. Phillips D, Chamberlin AR (2002) Total synthesis of dysiherbaine. J Org Chem 67:3194–3201.Google Scholar
  161. Pinheiro PS, Perrais D, Coussen F, Barhanin J, Bettler B, Mann JR, Malva JO, Heinemann SF, Mulle C (2007) GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippo-campal mossy fiber synapses. Proc Natl Acad Sci USA 104:12181–12186.Google Scholar
  162. Planells-Cases R, Lerma J, Ferrer-Montiel A (2006) Pharmacological intervention at ionotropic glutamate receptor complexes. Curr Pharm Des 12:3583–3596.Google Scholar
  163. Prorok M, Castellino FJ (2007) The molecular basis of conantokin antagonism of NMDA receptor function. Curr Drug Targets 8:633–642.Google Scholar
  164. Ramsey UP, Bird CJ, Shacklock PF, Laycock MV, Wright JLC (1994) Kainic acid and 1′-hydrox-ykainic acid from Palmariales. Nat Toxins 2:286–292.Google Scholar
  165. Ratte S, Lacaille JC (2006) Selective degeneration and synaptic reorganization of hippocampal interneurons in a chronic model of temporal lobe epilepsy. Adv Neurol 97:69–76.Google Scholar
  166. Ren Z, Riley NJ, Garcia EP, Sanders JM, Swanson GT, Marshall J (2003) Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J Neurosci 23:6608–6616.Google Scholar
  167. Rodriguez-Moreno A, Herreras O, Lerma J (1997) Kainate receptors presynaptically downregu-late GABAergic inhibition in the rat hippocampus. Neuron 19:893–901.Google Scholar
  168. Sakai R, Kamiya H, Murata M, Shimamoto K (1997) Dysiherbaine: a new neurotoxic amino acid from the Micronesian marine sponge Dysidea herbacea. J Am Chem Soc 119:4112–4116.Google Scholar
  169. Sakai R, Koike T, Sasaki M, Shimamoto K, Oiwa C, Yano A, Suzuki K, Tachibana K, Kamiya H (2001a) Isolation, structure determination, and synthesis of neodysiherbaine A, a new excitatory amino acid from a marine sponge. Org Lett 3:1479–1482.Google Scholar
  170. Sakai R, Swanson GT, Shimamoto K, Green T, Contractor A, Ghetti A, Tamura-Horikawa Y, Oiwa C, Kamiya H (2001b) Pharmacological properties of the potent epileptogenic amino acid dysiherbaine, a novel glutamate receptor agonist isolated from the marine sponge Dysidea herbacea. J Pharmacol Exp Ther 296:650–658.Google Scholar
  171. Sakai R, Matsubara H, Shimamoto K, Jimbo M, Kamiya H, Namikoshi M (2003) Isolations of N-methyl-d-aspartic acid-type glutamate receptor ligands from Micronesian sponges. J Nat Prod 66:784–787.Google Scholar
  172. Sakai R, Suzuki K, Shimamoto K, Kamiya H (2004) Novel betaines from a Micronesian sponge Dysidea herbacea. J Org Chem 69:1180–1185.Google Scholar
  173. Sakai R, Minato S, Koike K, Koike K, Jimbo M, Kamiya H (2005) Cellular and subcellular localization of kainic acid in the marine red alga Digenea simplex. Cell Tissue Res 322:491–502.Google Scholar
  174. Sakai R, Swanson GT, Sasaki M, Shimamoto K, Kamiya H (2006) Dysiherbaine: a new generation of excitatory amino acids of marine origin. CNS Agents Med Chem 6:83–108.Google Scholar
  175. Sakai R, Yoshida K, Kimura A, Koike K, Jimbo M, Koike K, Kobiyama A, Kamiya H (2008) Cellular origin of dysiherbaine, a marine sponge-derived excitatory amino acid. ChemBioChem 9(4):543–551.Google Scholar
  176. Sanders JM, Ito K, Settimo L, Pentikainen OT, Shoji M, Sasaki M, Johnson MS, Sakai R, Swanson GT (2005) Divergent pharmacological activity of novel marine-derived excitatory amino acids on glutamate receptors. J Pharmacol Exp Ther 314:1068–1078.Google Scholar
  177. Sanders JM, Pentikainen OT, Settimo L, Pentikainen U, Shoji M, Sasaki M, Sakai R, Johnson MS, Swanson GT (2006) Determination of binding site residues responsible for the subunit selectivity of novel marine-derived compounds on kainate receptors. Mol Pharmacol 69:1849–1860.Google Scholar
  178. Sasaki M, Maruyama T, Sakai R, Tachibana K (1999) Synthesis and biological activity of dysi-herbaine model compound. Tetrahedron Lett 40:3195–3198.Google Scholar
  179. Sasaki M, Koike T, Sakai R, Tachibana K (2000) Total synthesis of (−)-dysiherbaine, a novel neuroexcitotoxic amino acid. Tetrahedron Lett 41:3923–3926.Google Scholar
  180. Sasaki M, Tsubone K, Shoji M, Oikawa M, Shimamoto K, Sakai R (2006) Design, total synthesis, and biological evaluation of neodysiherbaine A derivative as potential probes. Bioorg Med Chem Lett 16:5784–5787.Google Scholar
  181. Sasaki M, Akiyama N, Tsubone K, Shoji M, Oikawa M, Sakai R (2007) Total synthesis of dysi-herbaine. Tetrahedron Lett 48:5697–5700.Google Scholar
  182. Sato M, Inoue F, Kanno N, Sato Y (1987) The occurrence of N-methyl-Daspartic acid in muscle extracts of the blood shell, Scapharca broughtonii. Biochem J 241:309–311.Google Scholar
  183. Sato M, Nakano T, Takeuchi M, Kanno N, Nagahisa E, Sato Y (1996) Distribution of neuroexcita-tory amino acids in marine algae. Phytochemistry 42:1595–1597.Google Scholar
  184. Sawant PM, Weare BA, Holland PT, Selwood AI, King KL, Mikulski CM, Doucette GJ, Mountfort DO, Kerr DS (2007) Isodomoic acids A and C exhibit low KA receptor affinity and reduced in vitro potency relative to domoic acid in region CA1 of rat hippocampus. Toxicon 50:627–638.Google Scholar
  185. Schiffer HH, Swanson GT, Heinemann SF (1997) Rat GluR7 and a carboxyterminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19:1141–1146.Google Scholar
  186. Schmitz D, Frerking M, Nicoll RA (2000) Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27:327–338.Google Scholar
  187. Schmitz D, Mellor J, Breustedt J, Nicoll RA (2003) Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 6:1058–1063.Google Scholar
  188. Scholin CA, Gulland F, Doucette GJ, Benson S, Busman M, Chavez FP, Cordaro J, DeLong R, De Vogelaere A, Harvey J, Haulena M, Lefebvre K, Lipscomb T, Loscutoff S, Lowenstine LJ, Marin R, III, Miller PE, McLellan WA, Moeller PDR, Powell CL, Rowles T, Silvagni P, Silver M, Spraker T, Trainer V, Van Dolah FM (2000) Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403:80–84.Google Scholar
  189. Schuster CM, Ultsch A, Schloss P, Cox JA, Schmitt B, Betz H (1991) Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 254:112–114.Google Scholar
  190. Shi S, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343.Google Scholar
  191. Shin-ya K, Kim J-S, Furihata K, Hayakawa Y, Seto H (1997a) Structure of kaitocephalin, a novel gluta-mate receptor antagonist produced by Eupenicillium shearii. Tetrahedron Lett 38:7079–7082.Google Scholar
  192. Shin-ya K, Kim JS, Hayakawa Y, Seto H (1997b) Protective effect of a novel AMPA and NMDA antagonist kaitocephalin against glutamate neurotoxicity. J Neurochem 73:S190.Google Scholar
  193. Shinozaki H (1988) Pharmacology of the glutamate receptor. Prog Neurobiol 30:399–435.Google Scholar
  194. Shoji M, Akiyama N, Tsubone K, Lash LL, Sanders JM, Swanson GT, Sakai R, Shimamoto K, Oikawa M, Sasaki M (2006) Total synthesis and biological evaluation of neodysiherbaine A and analogues. J Org Chem 71:5208–5220.Google Scholar
  195. Sierra Beltran A, Palafox-Uribe M, Grajales-Montiel J, Cruz-Villacorta A, Ochoa JL (1997) Sea bird mortality at Cabo San Lucas, Mexico: evidence that toxic diatom blooms are spreading. Toxicon 35:447–453.Google Scholar
  196. Simmons RM, Li DL, Hoo KH, Deverill M, Ornstein PL, Iyengar S (1998) Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology 37:25–36.Google Scholar
  197. Smolders I, Bortolotto ZA, Clarke VR, Warre R, Khan GM, O'Neill MJ, Ornstein PL, Bleakman D, Ogden A, Weiss B, Stables JP, Ho KH, Ebinger G, Collingridge GL, Lodge D, Michotte Y (2002) Antagonists of GLU(K5) containing kainate receptors prevent pilocarpine-induced limbic seizures. Nat Neurosci 5:796–804.Google Scholar
  198. Smothers CT, Woodward JJ (2007) Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-Daspartate NR1 and NR3 subunits. J Pharmacol Exp Ther 322:739–748.Google Scholar
  199. Snider BB, Hawryluk NA (2000) Synthesis of (−)-dysiherbaine. Org Lett 2:635–638.Google Scholar
  200. Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585.Google Scholar
  201. Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19.Google Scholar
  202. Sommer B, Burnashev N, Verdoorn TA, Keinänen K, Sakmann B, Seeburg PH (1992) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 11:1651–1656.Google Scholar
  203. Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42:1–32.Google Scholar
  204. Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300.Google Scholar
  205. Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O'Hara PJ, Heinemann SF (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13:1345–1357.Google Scholar
  206. Swanson GT, Gereau RW, I V, Green T, Heinemann SF (1997) Identification of amino acid residues that control functional behavior in GluR5 and GluR6 kainate receptors. Neuron 19:913–926.Google Scholar
  207. Swanson GT, Green T, Sakai R, Contractor A, Che W, Kamiya H, Heinemann SF (2002) Differential activation of individual subunits in heteromeric kainate receptors. Neuron 34:589–598.Google Scholar
  208. Takahashi K, Matsumura T, Corbin GRM, Ishihara J, Hatakeyama S (2006) A highly stereocon-trolled total synthesis of (−)-neodysiherbaine A. J Org Chem 71:4227–4231.Google Scholar
  209. Takemoto T (1978) Isolation and structural identification of naturally occurring excitatory amino acids. In: Kainic Acid as a Tool in Neurobiology (McGreer EG, ed.), New York pp. 1–15: Raven Press.Google Scholar
  210. Takemoto T, Daigo K (1958) Constituents of Chondria armata. Chem Pharm Bull 6:578–580.Google Scholar
  211. Takemoto T, Nakajima T, Sakuma R (1964) Isolation of a flycidal constituent “Ibotenic Acid” from Amanita muscaria and A. pantherina. Yakugaku Zasshi 84:1233–1234.Google Scholar
  212. Takemoto T, Nakajima T, Arihara S, Koike K (1975) Studies on the constituents of Quisqualis Fructus. II. Structure of quisqualic acid. Yakugaku Zasshi 95:326–332.Google Scholar
  213. Teichert RW, Jimenez EC, Twede V, Watkins M, Hollmann M, Bulaj G, Olivera BM (2007) Novel conantokins from conus parius venom are specific antagonists of NMDA receptors. J Biol Chem 282(51):36905–36913.Google Scholar
  214. Teitelbaum JS, Zatorre RJ, Carpenter S, Gendron D, Evans AC, Gjedde A, Cashman NR (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322:1781–1787.Google Scholar
  215. Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84:41–68.Google Scholar
  216. Tiedeken JA, Ramsdell JS, Ramsdell AF (2005) Developmental toxicity of domoic acid in zebrafish (Danio rerio). Neurotoxicol Teratol 27:711–717.Google Scholar
  217. Trainer VL, Adams NG, Bill BD, Anulacion BF, Wekell JC (1998) Concentration and dispersal of a Pseudo-nitzschia bloom in Penn Cove, Washington, USA. Nat Toxins 6:113–126.Google Scholar
  218. Tremblay J-F (2000) Shortage of kainic acid hampers neuroscience research. Chem Eng News 78:14–15.Google Scholar
  219. Tsai C, Schneider JA, Lehmann J (1988) Trans-2-carboxy-3-pyrrolidineacetic acid (CPAA), a novel agonist at NMDA-type receptors. Neurosci Lett 92:298–302.Google Scholar
  220. Usherwood PN (2000) Natural and synthetic polyamines: modulators of signalling proteins. Farmaco 55:202–205.Google Scholar
  221. Vignes M, Collingridge GL (1997) The synaptic activation of kainate receptors. Nature 388:179–182.Google Scholar
  222. Washburn MS, Dingledine R (1996) Block of alpha-amino-3-hydroxy-5-methyl4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J Pharmacol Exp Ther 278:669–678.Google Scholar
  223. Watanabe H, Kitahara T (2007) Revision of the stereochemistries of natural products through the synthetic study: Synthesis of fudecalone and kaitocephalin. J Synth Org Chem Jpn 65:511–519.Google Scholar
  224. Watters MR (1995) Organic neurotoxins in seafoods. Clin Neurol Neurosurg 97:119–124.Google Scholar
  225. Wekell JC, Gauglitz Jr EJ, Barnett HJ, Hatfield CL, Simons D, Ayres D (1994) Occurrence of domoic acid in Washington State razor clams (Siliqua patula) during 1991–1993. Nat Toxins 2:197–205.Google Scholar
  226. Werner P, Voigt M, Keinänen K, Wisden W, Seeburg PH (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351:742–744.Google Scholar
  227. White HS, McCabe RT, Armstrong H, Donevan SD, Cruz LJ, Abogadie FC, Torres J, Rivier JE, Paarmann I, Hollmann M, Olivera BM (2000) In vitro and in vivo characterization of conan-tokin-R, a selective NMDA receptor antagonist isolated from the venom of the fish-hunting snail Conus radiatus. J Pharmacol Exp Ther 292:425–432.Google Scholar
  228. Wilding TJ, Huettner JE (1997) Activation and desensitization of hippocampal kainate receptors. J Neurosci 17:2713–2721.Google Scholar
  229. Williams AJ, Dave JR, Phillips JB, Lin Y, McCabe RT, Tortella FC (2000) Neuroprotective efficacy and therapeutic window of the high-affinity N-methyl-d-aspartate antagonist conantokin-G: in vitro (primary cerebellar neurons) and in vivo (rat model of transient focal brain ischemia) studies. J Pharmacol Exp Ther 294:378–386.Google Scholar
  230. Williams AJ, Ling G, Berti R, Moffett JR, Yao C, Lu XM, Dave JR, Tortella FC (2003) Treatment with the snail peptide CGX-1007 reduces DNA damage and alters gene expression of c-fos and bcl-2 following focal ischemic brain injury in rats. Exp Brain Res 153:16–26.Google Scholar
  231. Wisden W, Seeburg PH (1993) A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 13:3582–3598.Google Scholar
  232. Wittekindt B, Malany S, Schemm R, Otvos L, Maccecchini ML, Laube B, Betz H (2001) Point mutations identify the glutamate binding pocket of the N-methyl-d-aspartate receptor as major site of conantokin-G inhibition. Neuropharmacology 41:753–761.Google Scholar
  233. Work TM, Barr BB, Beale AM, Fritz L, Quilliam MA, Wright JLC (1993) Epidemiology of domoic acid poisoning in brown pelicans (Pelicanus occidentalis) and Brandt's cormorants (Phalacrocorax pencillatus) in California. J Zool Wildlife Med 24:54–62.Google Scholar
  234. Wright JLC, Boyd RK, Defreitas ASW, Falk M, Foxall RA, Jamieson WD, Laycock M V, McCulloch AW, McInnes AG, Odense P, Pathak V, Quilliam MA, Ragan M, Sim PG, Thibault P, Walter JA, Gilgan M, Richard DJA, Dewar D (1989) Identification of domoic acid, a neuroex-citatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 67:481–490.Google Scholar
  235. Xia Z, Storm DR (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 6:267–276.Google Scholar
  236. Yuzaki M (2004) The delta2 glutamate receptor: a key molecule controlling synaptic plasticity and structure in Purkinje cells. Cerebellum 3:89–93.Google Scholar
  237. Zaman L, Arakawa O, Shimosu A, Onoue Y, Nishio S, Shida Y, Noguchi T (1997) Two new isomers of domoic acid from a red alga, Chondria armata. Toxicon 35:205–212.Google Scholar
  238. Zhu JJ, Esteban JA, Hayashi Y, Malinow R (2000) Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat Neurosci 3:1098–1106.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Geoffrey T. Swanson
    • 1
  • Ryuichi Sakai
    • 2
  1. 1.Department of Molecular Pharmacology and Biological Chemistry, Northwestern UniversityFeinberg School of MedicineChicago
  2. 2.Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan

Personalised recommendations