Phonotactic Recognition of Greek and Cypriot Dialects from Telephone Speech

  • Iosif Mporas
  • Todor Ganchev
  • Nikos Fakotakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5138)

Abstract

In the present work we report recent progress in development of dialect recognition system for the Standard Modern Greek and Cypriot dialect of Greek language. Specifically, we rely on a compound recognition scheme, where the outputs of multiple phone recognizers, trained on different European languages are combined. This allows achieving higher recognition accuracy, when compared to the one of the mainstream phone recognizer. The evaluation results reported here indicate high recognition accuracy - up to 95%, which makes the proposed solution a feasible addition to existing spoken dialogue systems, such as voice banking applications, call routers, voice portals, smart-home environments, e-Government speech oriented services, etc.

Keywords

Dialect recognition phone recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schultz, T., Kirchhoff, K.: Multilingual Speech Processing. Academic Press, Elsevier (2006)Google Scholar
  2. 2.
    Martin, A.F., Le, A.N.: NIST 2007 Language Recognition Evaluation. In: Odyssey 2008 - The Speaker and Language Recognition Workshop ISCA Tutorial and Research Workshop (2008)Google Scholar
  3. 3.
    Torres-Carrasquillo, P.A., Gleason, T.P., Reynolds, D.A.: Dialect Identification using Gaussian Mixture Models. In: Odyssey 2004 - The Speaker and Language Recognition Workshop, ISCA Tutorial and Research Workshop, pp. 297–300 (2004)Google Scholar
  4. 4.
    Tong, R., Ma, B., Li, H., Chng, E.S.: Integrating Acoustic, Prosodic and Phonotactic Features for Spoken Language Identification. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 205–208 (2006)Google Scholar
  5. 5.
    Campbell, W.M., Singer, E., Torres-Carrasquillo, P.A., Reynolds, D.A.: Language Recognition with Support Vector Machines. In: Odyssey 2004 - The Speaker and Language Recognition Workshop, ISCA Tutorial and Research Workshop, pp. 285–288 (2004)Google Scholar
  6. 6.
    Braun, J., Levkowitz, H.: Automatic Language Identification with Perceptually Guided Training and Recurrent Neural Networks. In: 5th International Conference on Spoken Language Processing (ICSLP), pp. 3201–3205 (1998)Google Scholar
  7. 7.
    Ghesquiere, P.J., Compernolle, D.V.: Flemish Accent Identification based on Formant and Duration Features. In: 2002 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 749–752 (2002)Google Scholar
  8. 8.
    Lin, C.Y., Wang, H.C.: Fusion of Phonotactic and Prosodic Knowledge for Language Identification. In: 9th International Conference on Spoken Language Processing (ICSLP), pp. 425–428 (2006)Google Scholar
  9. 9.
    Hazen, T., Zue, V.: Segment-based Automatic Language Identification. J. of the Acoustic Society of America 4(101), 2323–2331 (1997)CrossRefGoogle Scholar
  10. 10.
    Farinas, J., Pellegrino, F., Rouas, J.L., Andre-Obrecht, R.: Merging Segmental and Rhythm Features for Automatic Language Identification. In: 2002 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 753–756 (2002)Google Scholar
  11. 11.
    Huang, R., Hansen, J.: Dialect/Accent Classification via Boosted Word Modeling. In: 2005 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 585–588 (2005)Google Scholar
  12. 12.
    Campbell, W.M., Richardson, F., Reynolds, D.A.: Language Recognition with Word Lattices and Support Vector Machines. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 425–428 (2007)Google Scholar
  13. 13.
    Zissman, M.: Comparison of Four Approaches to Automatic Language Identification. J. IEEE Transactions on Speech and Audio Processing 4(1), 31–44 (1996)CrossRefGoogle Scholar
  14. 14.
    Tsai, W.H., Chang, W.W.: Chinese Dialect Identification using an Acoustic-Phonotactic Model. In: 6th European Conference on Speech Communication and Technology (EUROSPEECH), pp. 367–370 (1999)Google Scholar
  15. 15.
    Koντoσo πoυλoς NΓ.: Δι αλ εκ τo ι κα ι ιδ ιω μα τα τη ς Nεα ς Eλλ ην ικ ης Γρ ηγ η (1994) Google Scholar
  16. 16.
    Chatzi, I., Fakotakis, N., Kokkinakis, G.: Greek speech database for creation of voice driven teleservices. In: 5th European Conference on Speech Communication and Technology (EUROSPEECH), pp. 1755–1758 (1997)Google Scholar
  17. 17.
    Kostoulas, T., Georgila, K.: Orientel Cypriot Greek Database. V.2.0 (2007)Google Scholar
  18. 18.
    Pollak, P., Cernocky, J., Boudy, J., Choukri, K., Van den Heuvel, H., Vicsi, K., Virag, A., Siemund, R., Majewski, W., Staroniewicz, P., Tropf, H.: SpeechDat(E) - Eastern European Telephone Speech Databases. In: XLDB Workshop and Satellite Event to LREC Conference on Very Large Telephone Speech Databases (2000)Google Scholar
  19. 19.
    Schwarz, P., Matejka, P., Cernocky, J.: Towards Lower Error Rates in Phoneme Recognition. In: Sojka, P., Kopecek, I., Pala, K. (eds.) TSD 2004. LNCS (LNAI), vol. 3206, pp. 465–472. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Hoge, H., Draxler, C., Van den Heuvel, H., Johansen, F.T., Sanders, E., Tropf, H.S.: SpeechDat Multilingual Speech Databases for Teleservices: Across the Finish Line. In: 6th European Conference on Speech Communication and Technology (EUROSPEECH), pp. 2699–2702 (1999)Google Scholar
  21. 21.
    Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for HTK Version 3.3). Cambridge University, Cambridge (2005)Google Scholar
  22. 22.
    Clarkson, P.R., Rosenfeld, R.: Statistical Language Modeling Using the CMU-Cambridge Toolkit. In: 5th European Conference on Speech Communication and Technology (EUROSPEECH), pp. 2707–2710 (1997)Google Scholar
  23. 23.
    Martin, A., Doddington, G., Kamm, T., Ordowski, M., Przybocki, M.: The DET curve in assessment of detection task performance. In: 5th European Conference on Speech Communication and Technology (EUROSPEECH), vol. 4, pp. 1895–1898 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Iosif Mporas
    • 1
  • Todor Ganchev
    • 1
  • Nikos Fakotakis
    • 1
  1. 1.Artificial Intelligence Group, Wire Communications Laboratory, Dept. of Electrical and Computer EngineeringUniversity of PatrasRionGreece

Personalised recommendations