An Adverbial Approach for the Formal Specification of Topological Constraints Involving Regions with Broad Boundaries

  • Lotfi Bejaoui
  • François Pinet
  • Michel Schneider
  • Yvan Bédard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5231)


Topological integrity constraints control the topological properties of spatial objects and the validity of their topological relationships in spatial databases. These constraints can be specified by using formal languages such as the spatial extension of the Object Constraint Language (OCL). Spatial OCL allows the expression of topological constraints involving crisp spatial objects. However, topological constraints involving spatial objects with vague shapes (e.g., regions with broad boundaries) are not supported by this language. Shape vagueness requires using appropriate topological operators (e.g., strongly Disjoint, fairly Meet) to specify valid relations between these objects; otherwise, the constraints cannot be respected. This paper addresses the problem of the lack of terminology to express topological constraints involving regions with broad boundaries. We propose an extension of Spatial OCL based on a geometric model for objects with vague shapes and an adverbial approach for topological relations between regions with broad boundaries. This extension of Spatial OCL is then tested on an agricultural database.


Object Constraint Language Integrity Constraint Spatial Object Topological Relation Topological Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bédard, Y., Larrivée, S., Proulx, M.J., Nadeau, M.: Modeling Geospatial Databases with Plug-Ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 Years of Research and Experimentations on Perceptory. In: Wang, S., et al. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp. 17–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bejaoui, L., Bédard, Y., Pinet, F., Salehi, M., Schneider, M.: Logical consistency for vague spatiotemporal objects and relations. In: The 5th International Symposium on Spatial Data Quality (ISSDQ 2007), Enschede, Netherlands (June 2007)Google Scholar
  3. 3.
    Bejaoui, L., Bédard, Y., Pinet, F., Schneider, M.: Qualified topological relations between objects with possibly vague shape. International Journal of Geographical Information Sciences (to appear, 2008)Google Scholar
  4. 4.
    Burrough, P.A., Frank, A.U.: Geographic Objects with Indeterminate Boundaries. Taylor & Francis, London (1996)Google Scholar
  5. 5.
    Clementini, E., Di Felice, P.: A Comparison of Methods for Representing Topological Relationships. Information Sciences 3, 149–178 (1995)CrossRefGoogle Scholar
  6. 6.
    Clementini, E., Di Felici, P.: Approximate topological relations. International Journal of Approximate Reasoning 16, 173–204 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cockcroft, S.: A Taxonomy of Spatial Data Integrity Constraints. Geoinformatica 1(4), 327–343 (1997)CrossRefGoogle Scholar
  8. 8.
    Cohn, A.G., Gotts, N.M.: The ’egg-yolk’ representation of regions with indeterminate boundaries. In: Burrough, P., Frank, A. (eds.) Proceedings of the GISDATA Specialist Meeting on Spatial Objects with Undetermined Boundaries, pp. 171–187. Taylor & Francis, Abington (1996)Google Scholar
  9. 9.
    Dilo, A.: Representation of and reasoning with vagueness in spatial information: A system for handling vague objects. PhD thesis, ITC, Netherlands, p. 187 (2006)Google Scholar
  10. 10.
    Duboisset, M., Pinet, F., Kang, M.A., Schneider, M.: Precise modeling and verification of topological integrity constraints in spatial databases: from an expressive power study to code generation principles. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 465–482. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Egenhofer, M., Herring, J.: A mathematical framework for the definition of topological relations. In: Brassel, K., Kishimoto, H. (eds.) Proceedings of the Fourth International Symposium on Spatial Data Handling, Zurich, Switzerland, pp. 803–813 (1990)Google Scholar
  12. 12.
    Erwig, M., Schneider, M.: Vague regions. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 298–320. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Frank, A.U.: Tiers of ontology and consistency constraints in geographical information systems. Int. J. of Geographical Information Science 15(7), 667–678 (2001)CrossRefGoogle Scholar
  14. 14.
    Guptill, S.C., Morrison, J.L.: Spatial data quality. In: Guptill, S.C., Morrison, J.L. (eds.) Elements of spatial data quality, Elsevier Science Inc., New York (1995)Google Scholar
  15. 15.
    Hazarika, S.M., Cohn, A.G.: A taxonomy for spatial vagueness, an alternative egg-yolk interpretation. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 92–107. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Pinet, F., Duboisset, M., Soulignac, V.: Using UML and OCL to maintain the consistency of spatial data in environmental information systems. Environmental modelling & software 22(8), 1217–1220 (2007)CrossRefGoogle Scholar
  17. 17.
    Reis, R., Egenhofer, M.J., Matos, J.: Topological relations using two models of uncertainty for lines. In: Proceeding of the 7th international Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Lisbon, Portugal, 5 - 7 July, pp. 286–295 (2006)Google Scholar
  18. 18.
    Rodriguez, A.: Inconsistency Issues in Spatial Databases. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 237–269. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Salehi, M., Bédard, Y., Mir, A.M., Brodeur, J.: Classification of integrity constraints in spatiotemporal databases: toward building an integrity constraint specification language. International Journal of Geographical Information Science (submitted, 2007)Google Scholar
  20. 20.
    Schmid, B., Warmer, J., Clark, T.: Object Modeling with the OCL: the Relational Behind the Object Constraint Language, p. 281. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  21. 21.
    Servigne, S., Ubeda, T., Puricelli, A., Laurini, R.: A Methodology for Spatial Consistency Improvement of Geographic Databases. GeoInformatica 4(1), 7–34 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Souris, M.: Contraintes d’intégrité spatiales. In: Devillers, R., Jeansoulin, R. (eds.) Qualité de l’information géographique, Lavoisier, pp. 100–123 (2006)Google Scholar
  23. 23.
    Tang, T.: Spatial object modeling in fuzzy topological spaces: with applications to land cover change. PhD thesis, University of Twente (2004) ISBN 90-6164-220-5Google Scholar
  24. 24.
    Van Oort, P.: Spatial data quality: from description to application. In: Publication on Geodesy 60, Delft, December 2006, Geodetic Commission, Netherlands (2006)Google Scholar
  25. 25.
    Yazici, A., Zhu, Q., Sun, N.: Semantic data modeling of spatiotemporal database applications. Int. J. Intell. Syst., 881–904 (2001)Google Scholar
  26. 26.
    Zhan, F.B., Lin, H.: Overlay of Two Simple Polygons with Indeterminate Boundaries. Transactions in GIS 7(1), 67–81 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lotfi Bejaoui
    • 1
    • 2
    • 3
    • 4
  • François Pinet
    • 3
  • Michel Schneider
    • 3
    • 4
  • Yvan Bédard
    • 1
    • 2
  1. 1.Centre for Research in Geomatics (CRG)Laval UniversityQuebec (QC)Canada
  2. 2.Industrial Research Chair in Geospatial Databases for Decision SupportLaval UniversityQuebec (QC)Canada
  3. 3.Cemagref-Clermont-FerrandFrance
  4. 4.Dept. Computer SciencesBlaise-Pascal UniversityClermont-FerrandFrance

Personalised recommendations