An Empirical Investigation on Dynamic Modeling in Requirements Engineering

  • Carmine Gravino
  • Giuseppe Scanniello
  • Genoveffa Tortora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5301)


Modeling is a fundamental activity within the requirements engineering process concerning the construction of abstract descriptions of system requirements that are amenable to interpretation and validation. In this paper we report on a controlled experiment aimed at assessing whether dynamic modeling of system requirements provides an accurate account of stakeholders’ requirements. The context is constituted of second year Bachelor students in Computer Science at the University of Basilicata. The data analysis reveals that there is not significant difference in the comprehension of system requirements achieved by using or not dynamic modeling.


System Requirement Sequence Diagram Object Constraint Language Software Requirement Laboratory Session 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceedings of the Conference on the Future of Software Engineering, pp. 35–46. ACM Press, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Finkelstein, A.: Requirements engineering: an overview. In: 2nd Asia-Pacific Software Engineering Conference (1993)Google Scholar
  3. 3.
    Jackson, M.: Software Requirements and Specifications: A Lexicon of Practice, Principles and Prejudices. Addison-Wesley, Reading (1995)Google Scholar
  4. 4.
    Bruegge, B., Dutoit, A.: Object-Oriented Software Engineering Using UML, Patterns, and Java. Prentice-Hall, Englewood Cliffs (2004)Google Scholar
  5. 5.
    Davis, A.: Software Requirements: Objects, Functions and States. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  6. 6.
    Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)zbMATHGoogle Scholar
  7. 7.
    Nakajo, T., Kume, H.: A case history analysis of software error cause-effect relationships. Transactions on Software Engineering 17(8), 830–838 (1991)CrossRefGoogle Scholar
  8. 8.
    Wieringa, R.J.: Requirements Engineering: Frameworks forUnderstanding. Wiley, Chichester (1996)Google Scholar
  9. 9.
    Anda, B., Sjoberg, D.I., Jorgensen, M.: Quality and understandability of use case models. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 402–428. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Britton, C., Kutar, M., Anthony, S., Barker, T., Beecham, S., Wilkinson, V.: An empirical study of user preference and performance with UML diagrams. In: IEEE Symposia on Human Centric Computing Languages and Environments, pp. 31–33. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  11. 11.
    Letier, E., Kramer, J., Uchitel, J.M.S.: Monitoring and control in scenario-based requirements analysis. In: 27th International Conference on Software Engineering, pp. 382–391. ACM Press, New York (2005)Google Scholar
  12. 12.
    Heitmeyer, C., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of requirements specifications. Transaction on Software Engineerig and Methdology 5(3), 231–261 (1996)CrossRefGoogle Scholar
  13. 13.
    Cox, K., Aurun, A., Jeffery, R.: Classification of research efforts in requirements engineering. Journal of Research and Practice in Information Technology 36(4), 211–229 (2004)Google Scholar
  14. 14.
    Fagan, M.: Design and code inspections to reduce errors in program development. IBM Systems Journal 15(3), 182–211 (1976)CrossRefGoogle Scholar
  15. 15.
    Torchiano, M.: Empirical assessment of UML static object diagrams. In: Proceedings of the 12th International Workshop in Program Comprehension, Bari, Italy, pp. 226–229. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  16. 16.
    Otero, C., Dolado, J.J.: An initial experimental assessment of the dynamic modelling in UML. Empirical Software Engineering 7(1), 27–47 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Otero, M.C., Dolado, J.J.: An empirical comparison of the dynamic modeling in OML and UML. Journal of Systems and Software 77(2), 91–102 (2005)CrossRefGoogle Scholar
  18. 18.
    Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: The role of experience and ability in comprehension tasks supported by UML stereotypes. In: Proceedings of the 29th International Conference on Software Engineering, Minneapolis, MN, USA, pp. 375–384. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  19. 19.
    Conallen, J.: Building Web Applications with UML. Object Technology. Addison-Wesley, Reading (1999)Google Scholar
  20. 20.
    Kuzniarz, L., Staron, M., Wholin, C.: An empirical study on using stereotypes to improve understanding on UML models. In: 2th International Workshop on Program Comprehension, Bari, Italy, pp. 14–23. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  21. 21.
    Cruz-Lemus, J.A., Genero, M., Manso, M.E., Piattini, M.: Evaluating the effect of composite states on the understandability of UML statechart diagrams. In: ACM/IEEE 8th International Conference on Model Driven Engineering Languages and Systems, Montego Bay, Jamaica, pp. 113–125. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Briand, L., Labiche, Y., Di Penta, M., Yan-Bondoc, H.: An experimental investigation of formality in UML-based development. IEEE Transactions on Software Engineering 31(10), 833–849 (2005)CrossRefGoogle Scholar
  23. 23.
    OMG: Object constraint language (OCL) specification, version 2.0 (2005)Google Scholar
  24. 24.
    Reynoso, L., Genero, M., Piattini, M., Manso, M.E.: Does object coupling really affect the understanding and modifying of UML expressions? In: Proceedings of ACM Symposium on Applied Computing, pp. 1721–1727. ACM Press, New York (2006)Google Scholar
  25. 25.
    Arisholm, E., Briand, L.C., Hove, S.E., Labiche, Y.: An empirical comparison of the dynamic modeling in OML and UML. Transactions on Software Engineering 32(6), 365–381 (2006)CrossRefGoogle Scholar
  26. 26.
    Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  27. 27.
    Gravino, C., Scanniello, G., Tortora, G.: A controlled experiment conducted with bachelor students on dynamic modeling. Technical report, University of Salerno (2008),
  28. 28.
    Purchase, H.C., Colpoys, L., McGill, M., Carrington, D., Britton, C.: UML class diagram syntax: an empirical study of comprehension. In: Proceedings of Australian Symposium on Information Visualisation, Sydney, Australia, pp. 113–120. Australian Computer Society (2001)Google Scholar
  29. 29.
    Purchase, H.C., Wellanda, R., McGillb, M., Colpoysb, L.: Comprehension of diagram syntax: an empirical study of entity relationship notations. International Journal of Human-Computer Studies 61(2), 187–203 (2004)CrossRefGoogle Scholar
  30. 30.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  31. 31.
    Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links between code and documentation. IEEE Transactions on Software Engineering 28(10), 970–983 (2002)CrossRefGoogle Scholar
  32. 32.
    Zimmermann, T., Weissgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide software changes. IEEE Transactions on Software Engineering 31(6), 429–445 (2005)CrossRefGoogle Scholar
  33. 33.
    Briand, L., Penta, M.D., Labiche, Y.: Assessing and improving state-based class testing: A series of experiments. Transaction on Software Engineerig 30(11), 770–793 (2004)CrossRefGoogle Scholar
  34. 34.
    Oppenheim, A.N.: Questionnaire Design, Interviewing and Attitude Measurement. Pinter Publishers (1992)Google Scholar
  35. 35.
    Devore, J.L., Farnum, N.: Applied Statistics for Engineers and Scientists. Duxbury (1999)Google Scholar
  36. 36.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, Chichester (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carmine Gravino
    • 1
  • Giuseppe Scanniello
    • 2
  • Genoveffa Tortora
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversity of SalernoFiscianoItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversity of BasilicataPotenzaItaly

Personalised recommendations