Empirical Analysis of the Relation between Level of Detail in UML Models and Defect Density

  • Ariadi Nugroho
  • Bas Flaton
  • Michel R. V. Chaudron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5301)

Abstract

This paper investigates the relation between the level of detail (LoD) in UML models and defect density of the associated implementation. We propose LoD measures that are applicable to both class- and sequence diagrams. Based on empirical data from an industrial software project we have found that classes with higher LoD, calculated using sequence diagram LoD metrics, correlates with lower defect density. Overall, this paper discusses a novel and practical approach to measure LoD in UML models and describes its application to a significant industrial case study.

Keywords

Unified Modeling Language Design Metrics Quality Measure Correlation Analyses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)CrossRefGoogle Scholar
  2. 2.
    Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on open source software for fault prediction. IEEE Trans. Softw. Eng. 31(10), 897–910 (2005)CrossRefGoogle Scholar
  3. 3.
    Subramanyam, R., Krishnan, M.S.: Empirical analysis of ck metrics for object-oriented design complexity: Implications for software defects. IEEE Trans. Softw. Eng. 29(4), 297–310 (2003)CrossRefGoogle Scholar
  4. 4.
    Brito e Abreu, F., Melo, W.: Evaluating the impact of object-oriented design on software quality. In: METRICS 1996: Proceedings of the 3rd International Software Metrics Symposium. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  5. 5.
    Janes, A., Scotto, M., Pedrycz, W., Russo, B., Stefanovic, M., Succi, G.: Identification of defect-prone classes in telecommunication software systems using design metrics. Information Sciences 176(24), 3711–3734 (2006)CrossRefGoogle Scholar
  6. 6.
    Succi, G., Pedrycz, W., Stefanovic, M., Miller, J.: Practical assessment of the models for identification of defect-prone classes in object-oriented commercial systems using design metrics. Journal of Systems and Software 65(1), 1–12 (2003)CrossRefGoogle Scholar
  7. 7.
    El Emam, K., Melo, W., Machado, J.C.: The prediction of faulty classes using object-oriented design metrics. Journal of Systems and Software 56(1), 63–75 (2001)CrossRefGoogle Scholar
  8. 8.
    Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)CrossRefGoogle Scholar
  9. 9.
    Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49(5), 109–113 (2006)CrossRefGoogle Scholar
  10. 10.
    SDMetrics: The UML design quality metrics tool, http://www.sdmetrics.com
  11. 11.
    Chillarege, R., Kao, W.L., Condit, R.G.: Defect type and its impact on the growth curve. In: Proceedings of the 13th international conference on Software engineering, pp. 246–255. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar
  12. 12.
    Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., Wong, M.Y.: Orthogonal defect classification-a concept for in-process measurements. IEEE Transactions on Software Engineering 18(11), 943–956 (1992)CrossRefGoogle Scholar
  13. 13.
    IEEE: IEEE standard classification for software anomalies. IEEE Std 1044-1993 (1994)Google Scholar
  14. 14.
    Lange, C.F.J., Chaudron, M.R.V., Muskens, J.: Practice: UML software architecture and design description. IEEE Software 23(2), 40–46 (2006)CrossRefGoogle Scholar
  15. 15.
    Nugroho, A., Chaudron, M.R.V.: Managing the quality of UML models in practice. In: Rech, J., Bunse, C. (eds.) Model-Driven Software Development: Integrating Quality Assurance. Idea Group Inc. (2008)Google Scholar
  16. 16.
    Nugroho, A., Chaudron, M.R.V.: A survey into the rigor of UML use and its perceived impact on quality and productivity. In: 2nd International Symposium of Empirical Software Engineering and Measurement (2008)Google Scholar
  17. 17.
    Briand, L.C., Labiche, Y., Penta, M.D., Yan-Bondoc, H.D.: An experimental investigation of formality in UML-based development. IEEE Transactions on Software Engineering 31(10), 833–849 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ariadi Nugroho
    • 1
  • Bas Flaton
    • 2
  • Michel R. V. Chaudron
    • 1
    • 2
  1. 1.LIACS – Leiden UniversityLeidenThe Netherlands
  2. 2.TU EindhovenEindhovenThe Netherlands

Personalised recommendations