Model Transformation as an Optimization Problem

  • Marouane Kessentini
  • Houari Sahraoui
  • Mounir Boukadoum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5301)


Most of the available work on model transformation is based on the hypothesis that transformation rules exist and that the important issue is how to express them. But in real life, the rules may be difficult to define; this is often the case when the source and/or target formalisms are not widely used or proprietary. In this paper, we consider the transformation mechanism as a combinatorial optimization problem where the goal is to find a good transformation starting from a small set of available examples. Our approach, named model transformation as optimization by examples (MOTOE), combines transformation blocks extracted from examples to generate a target model. To that end, we use an adapted version of particle swarm optimization (PSO) where transformation solutions are modeled as particles that exchange transformation blocks to converge towards an optimal transformation solution. MOTOE has two main advantages: It proposes a transformation without the need to derive transformation rules first, and it can operate independently from the source and target metamodels.


Particle Swarm Optimization Source Model Model Transformation Transformation Rule Particle Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research Roadmap. In: Briand, L., Wolf, A. (eds.) Intl. Conf. on Software Engineering (ICSE 2007): Future of Software Engineering. IEEE Computer Soceity Press, Los Alamitos (2007)Google Scholar
  2. 2.
    Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: OOSPLA 2003 Workshop on Generative Techniques in the Context of Model-Driven Architecture, Anaheim, USA (2003)Google Scholar
  3. 3.
    Taenzer, G.: AGG: a graph transformation environment for system modeling and validation. In: Proc. Tool Exihibition at Formal Methods 2003, Pisa, Italy (September 2003)Google Scholar
  4. 4.
    Varro, D., Pataricza, A.: Generic and meta-transformations for model transformation engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Jouault, F., Kurter, I.: Transforming models with ATL. In: Proc. Of the Model Transformations in Practice Workshop at MoDELS 2005, Jamaica (2005)Google Scholar
  6. 6.
    Object Management Group (OMG), Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Final Adopted Specification, ptc/05-11-01,
  7. 7.
    Behrens, U., Flasinski, M., Hagge, L., Jurek, J., Ohrenberg, K.: Recent developments of the ZEUS expert system ZEX. IEEE Trans. Nucl. Sci. NS-43, 65–68 (1996)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE Intl. Conf. on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation. In: Proc. Intl. Workshop on Graph and Model Transformation (GraMoT 2005) (2005)Google Scholar
  10. 10.
    Egyed, A.: Heterogeneous Views Integration and its Automation, Ph.D. Thesis,Univ. of Southern California (2000)Google Scholar
  11. 11.
    Egyed, A.: Automated abstraction of class diagrams. ACM Trans. Softw. Eng. Methodol. 11(4), 449–491 (2002)CrossRefGoogle Scholar
  12. 12.
    DuanCheung, Y., Fu, X., Gu, Y.: A metamodel based model transformation approach. In: Proc. ACIS Intl. Conf. on Software Engineering Research, Management and Applications, pp. 184–191 (2005)Google Scholar
  13. 13.
    Varró, D.: Model Transformation By Example. In: Proc. ACM/IEEE Intl. Conf. on Model Driven Engineering Languages and Systems (MoDELS/UML) (2006)Google Scholar
  14. 14.
    Varró, D., Balogh, Z.: Automating Model Transformation by Example Using Inductive Logic Programming. In: ACM Symposium on Applied Computing — Model Transformation Track (SAC 2007) (2007)Google Scholar
  15. 15.
    Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transformation Generation By-Example. In: HICSS-40 Hawaii Intl. Conf. on System Sciences (January 2007)Google Scholar
  16. 16.
    Strommer, M., Murzek, M., Wimmer, M.: Applying Model Transformation By-Example on Business Process Modeling Languages. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M., Bertolotto, M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 116–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Salman, A., Imtiaz, A., Al-Madani, S.: Particle swarm optimization for task assignment problem. In: IASTED Intl. Conf. on Artificial Intelligence and Applications (AIA 2001) (2001)Google Scholar
  18. 18.
    Ai-ling, C., Gen-ke, Y., Zhi-ming, W.: Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. Journal of Zhejiang University Science A 7(4), 607–614 (2006)CrossRefGoogle Scholar
  19. 19.
    Windisch, A., Wappler, S., Wegene, J.: Applying particle swarm optimization to software testing. In: Proc. Conf. on Genetic and Evolutionary Computation (GECCO 2007), pp. 1121–1128 (2007)Google Scholar
  20. 20.
    Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2001), pp. 81–86 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marouane Kessentini
    • 1
  • Houari Sahraoui
    • 1
  • Mounir Boukadoum
    • 2
  1. 1.DIRO, Université de Montréal 
  2. 2.Dept. d’Informatique, UQAM 

Personalised recommendations