Optimal Tableaux for Right Propositional Neighborhood Logic over Linear Orders

  • Davide Bresolin
  • Angelo Montanari
  • Pietro Sala
  • Guido Sciavicco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5293)


The study of interval temporal logics on linear orders is a meaningful research area in computer science and artificial intelligence. Unfortunately, even when restricted to propositional languages, most interval logics turn out to be undecidable. Decidability has been usually recovered by imposing severe syntactic and/or semantic restrictions. In the last years, tableau-based decision procedures have been obtained for logics of the temporal neighborhood and logics of the subinterval relation over specific classes of temporal structures. In this paper, we develop an optimal NEXPTIME tableau-based decision procedure for the future fragment of Propositional Neighborhood Logic over the whole class of linearly ordered domains.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowman, H., Thompson, S.: A decision procedure and complete axiomatization of finite interval temporal logic with projection. Journal of Logic and Computation 13(2), 195–239 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau systems for logics of subinterval structures over dense orderings. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 73–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: On Decidability and Expressiveness of Propositional Interval Neighborhood Logics. In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 84–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm for Propositional Neighborhood Logic. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 549–560. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for Right Propositional Neighborhood Logic. Journal of Automated Reasoning 38(1-3), 173–199 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chaochen, Z., Hansen, M.R.: An adequate first order interval logic. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 584–608. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Goranko, V., Montanari, A., Sciavicco, G., Sala, P.: A general tableau method for propositional interval temporal logics: Theory and implementation. Journal of Applied Logic 4(3), 305–330 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal of the ACM 38(4), 935–962 (1991)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Moszkowski, B.: Reasoning about digital circuits. Tech. Rep. 83-970, Dept. of Computer Science, Stanford University, Stanford, CA (1983)Google Scholar
  10. 10.
    Otto, M.: Two variable first-order logic over ordered domains. Journal of Symbolic Logic 66(2), 685–702 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Venema, Y.: A modal logic for chopping intervals. Journal of Logic and Computation 1(4), 453–476 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Davide Bresolin
    • 1
  • Angelo Montanari
    • 2
  • Pietro Sala
    • 2
  • Guido Sciavicco
    • 3
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly
  3. 3.Department of Information, Engineering and CommunicationsUniversity of MurciaMurciaSpain

Personalised recommendations