Literal Projection for First-Order Logic

  • Christoph Wernhard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5293)


The computation of literal projection generalizes predicate quantifier elimination by permitting, so to speak, quantifying upon an arbitrary sets of ground literals, instead of just (all ground literals with) a given predicate symbol. Literal projection allows, for example, to express predicate quantification upon a predicate just in positive or negative polarity. Occurrences of the predicate in literals with the complementary polarity are then considered as unquantified predicate symbols. We present a formalization of literal projection and related concepts, such as literal forgetting, for first-order logic with a Herbrand semantics, which makes these notions easy to access, since they are expressed there by means of straightforward relationships between sets of literals. With this formalization, we show properties of literal projection which hold for formulas that are free of certain links, pairs of literals with complementary instances, each in a different conjunct of a conjunction, both in the scope of a universal first-order quantifier, or one in a subformula and the other in its context formula. These properties can justify the application of methods that construct formulas without such links to the computation of literal projection. Some tableau methods and direct methods for second-order quantifier elimination can be understood in this way.


Predicate Symbol Propositional Formula Ground Term Ground Atom Ground Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: KR 1992, pp. 425–435 (1992)Google Scholar
  2. 2.
    Lin, F., Reiter, R.: Forget It! In: Working Notes, AAAI Fall Symposium on Relevance, pp. 154–159 (1994)Google Scholar
  3. 3.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited: A reduction algorithm. J. Autom. Reason. 18(3), 297–338 (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Darwiche, A.: Decomposable negation normal form. JACM 48(4), 608–647 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Wernhard, C.: Semantic knowledge partitioning. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 552–564. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conservative extensions in description logics. In: KR 2006, pp. 187–197 (2006)Google Scholar
  8. 8.
    Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimination: Foundations, Computational Aspects and Applications. College Publications (2008)Google Scholar
  9. 9.
    Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and completeness in modal logic. I. the core algorithm SQEMA. Log. Meth. in Comp. Science 2(1-5), 1–26 (2006)MathSciNetGoogle Scholar
  10. 10.
    Murray, N.V., Rosenthal, E.: Tableaux, path dissolution and decomposable negation normal form for knowledge compilation. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 165–180. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Lang, J., Liberatore, P., Marquis, P.: Propositional independence — formula-variable independence and forgetting. JAIR 18, 391–443 (2003)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Wernhard, C.: Automated Deduction for Projection Elimination. PhD thesis, Universität Koblenz-Landau, Germany (to appear, 2008)Google Scholar
  13. 13.
    Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reason. 37(1-2), 21–43 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ebbinghaus, H.D., Flum, J., Thomas, W.: Einführung in die mathematische Logik, 4th edn. Spektrum Akademischer Verlag, Heidelberg (1996)zbMATHGoogle Scholar
  15. 15.
    Huang, J., Darwiche, A.: DPLL with a trace: From SAT to knowledge compilation. In: IJCAI 2005, pp. 156–162 (2005)Google Scholar
  16. 16.
    Wernhard, C.: Literal projection for first-order logic (extended version). Technical Report Fachbereich Informatik, Universität Koblenz-Landau (to appear, 2008)Google Scholar
  17. 17.
    Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematischen Logik. Math. Annalen 110, 390–413 (1935)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Szalas, A.: On the correspondence between modal and classical logic: An automated approach. J. Log. Comput. 3(6), 605–620 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dershowitz, N., Plaisted, D.A.: Rewriting. In: Handbook of Automated Reasoning, vol. I, pp. 537–610. Elsevier, Amsterdam (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christoph Wernhard
    • 1
  1. 1.Universität Koblenz-Landau 

Personalised recommendations