A Game-Theoretic Measure of Argument Strength for Abstract Argumentation

  • Paul-Amaury Matt
  • Francesca Toni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5293)


Abstract argumentation (Dung 1995) is a theory of dialectic that allows us to formalise and study various notions of argument acceptability. We depart from this standard approach and formalise a measure of argument strength by applying the concept of value of a game, as defined in Game Theory (von Neumann 1928). The measure thus obtained satisfies a number of intuitively appealing properties that can be derived mathematically from the minimax theorem.


Mixed Strategy Pure Strategy Imperfect Information Argumentation Strategy Abstract Argumentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambler, S.J.: A Categorical Approach to the Semantics of Argumentation. Mathematical Structures in Computer Science 6(2), 167–188 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  2. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based argumentation. In: 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 1–7 (1998)Google Scholar
  3. Amgoud, L., Prade, H.: Using Arguments for Making Decisions: A Possibilistic Logic Approach. In: 20th Conference of Uncertainty in Artificial Intelligence (UAI 2004), pp. 10–17 (2004)Google Scholar
  4. Amgoud, L., Dupin de Saint-Cyr, F.: Measures for Persuasion Dialogs: A Preliminary Investigation. In: 2nd International Conference on Computational Models of Argument (COMMA 2008), pp. 13–24 (2008)Google Scholar
  5. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelligence 128, 203–235 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1-2), 63–101 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. Borel, E.: La théorie du jeu et les équations intégrales à noyau symétrique gauche. Comptes Rendus de l’Académie des Sciences (1921)Google Scholar
  8. Budzyńska, K., Kacprzak, M., Rembelski, P.: Modelling Persuasiveness: Change of Uncertainty Through Agents’ Interactions. In: 2nd International Conference on Computational Models of Argument (COMMA 2008), pp. 85–96 (2008)Google Scholar
  9. Cayrol, C., Lagasquie-Schiex, M.-C.: Graduality in Argumentation. Journal of Artificial Intelligence Research 23, 245–297 (2005)zbMATHMathSciNetGoogle Scholar
  10. Dantzig, G.B., Orden, A., Wolfe, P.: The generalised simplex method for minimizing a linear form under linear inequality constraints. Pacific Journal of Mathematics 5(2), 183–195 (1955)zbMATHMathSciNetGoogle Scholar
  11. Dresher, M.: The Mathematics of Games of Strategy. Dover Publications (1981)Google Scholar
  12. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence 77(2), 321–357 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. Dung, P.M., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial Intelligence 171, 642–674 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  15. Dunne, P.E., Bench-Capon, T.J.M.: Two party immediate response disputes: Properties and efficiency. Artificial Intelligence 149, 221–250 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 6th edn. McGraw-Hill, New York (1995)Google Scholar
  17. Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks. Journal of logic and computation 9(2), 215–261 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. Kohlas, J., Haenni, R., Berzati, D.: Probabilistic argumentation systems and abduction. In: 8th International Workshops on Non-Monotonic Reasoning, pp. 391–398 (2000)Google Scholar
  19. Krause, P., Ambler, S., Elvang-Gøransson, M., Fox, J.: A logic of argumentation for reasoning under uncertainty. Computational Intelligence 11, 113–131 (1995)CrossRefMathSciNetGoogle Scholar
  20. Parsons, S.: Normative argumentation and qualitative probability. In: 1st International Joint Conference on Qualitative and Quantitative Practical Reasoning, pp. 466–480 (1997)Google Scholar
  21. Pollock, J.L.: How to reason defeasibly. Artificial Intelligence 57, 1–42 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  22. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artificial Intelligence 133, 233–282 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  23. Poole, D.: Probabilistic Horn Abduction and Bayesian Networks. Artificial Intelligence 64, 81–129 (1993)zbMATHCrossRefGoogle Scholar
  24. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. Journal of Applied Non Classical Logics 7, 25–75 (1997)zbMATHMathSciNetGoogle Scholar
  25. Prakken, H.: Coherence and Flexibility in Dialogue Games for Argumentation. Journal of Logic and Computation 15(6), 1009–1040 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  26. Rahwan, I., Larson, K.: Mechanism Design for Abstract Argumentation. In: 7th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 1031–1038 (2008)Google Scholar
  27. Riveret, R., Prakken, H., Rotolo, A., Sartor, G.: Heuristics in Argumentation: A Game-Theoretical Investigation. In: 2nd International Conference on Computational Models of Argument (COMMA 2008), pp. 324–335 (2008)Google Scholar
  28. Vreeswijk, G., Prakken, H.: Credulous and sceptical argument games for preferred semantics. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 239–253. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. von Neumann, J.: Zur Theorie des Gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)zbMATHCrossRefMathSciNetGoogle Scholar
  30. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paul-Amaury Matt
    • 1
  • Francesca Toni
    • 1
  1. 1.Department of ComputingImperial College London 

Personalised recommendations