Confluence Operators

  • Sébastien Konieczny
  • Ramón Pino Pérez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5293)

Abstract

In the logic based framework of knowledge representation and reasoning many operators have been defined in order to capture different kinds of change: revision, update, merging and many others. There are close links between revision, update, and merging. Merging operators can be considered as extensions of revision operators to multiple belief bases. And update operators can be considered as pointwise revision, looking at each model of the base, instead of taking the base as a whole. Thus, a natural question is the following one: Are there natural operators that are pointwise merging, just as update are pointwise revision? The goal of this work is to give a positive answer to this question. In order to do that, we introduce a new class of operators: the confluence operators. These new operators can be useful in modelling negotiation processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Booth, R.: Social contraction and belief negotiation. In: Proceedings of the Eighth Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 374–384 (2002)Google Scholar
  3. 3.
    Dalal, M.: Investigations into a theory of knowledge base revision: preliminary report. In: Proceedings of the American National Conference on Artificial Intelligence (AAAI 1988), pp. 475–479 (1988)Google Scholar
  4. 4.
    Dupin de Saint-Cyr, F., Lang, J.: Belief extrapolation (or how to reason about observations and unpredicted change). In: Proceedings of the Eighth Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 497–508 (2002)Google Scholar
  5. 5.
    Gärdenfors, P.: Knowledge in flux. MIT Press, Cambridge (1988)Google Scholar
  6. 6.
    Gärdenfors, P. (ed.): Belief Revision. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  7. 7.
    Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17(157-180) (1988)Google Scholar
  8. 8.
    Herzig, A., Rifi, O.: Update operations: a review. In: Proceedings of the Thirteenth European Conference on Artificial Intelligence (ECAI 1998), pp. 13–17 (1998)Google Scholar
  9. 9.
    Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and revising it. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 387–394 (1991)Google Scholar
  10. 10.
    Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52, 263–294 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and revising it. In: Gärdenfors, P. (ed.) Belief Revision. Cambridge University Press, Cambridge (1992)Google Scholar
  12. 12.
    Konieczny, S.: Belief base merging as a game. Journal of Applied Non-Classical Logics 14(3), 275–294 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelligence 157(1-2), 49–79 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical framework. Journal of Logic and Computation 12(5), 773–808 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lang, J.: Belief update revisited. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2517–2522 (2007)Google Scholar
  16. 16.
    Lobo, J., Uzcátegui, C.: Abductive change operators. Fundamenta Informaticae 27(4), 385–411 (1996)MATHMathSciNetGoogle Scholar
  17. 17.
    Meyer, T., Foo, N., Zhang, D., Kwok, R.: Logical foundations of negotiation: Outcome, concession and adaptation. In: Proceedings of the American National Conference on Artificial Intelligence (AAAI 2004), pp. 293–298 (2004)Google Scholar
  18. 18.
    Meyer, T., Foo, N., Zhang, D., Kwok, R.: Logical foundations of negotiation: Strategies and preferences. In: Proceedings of the Ninth Conference on Principles of Knowledge Representation and Reasoning (KR 2004), pp. 311–318 (2004)Google Scholar
  19. 19.
    Revesz, P.Z.: On the semantics of arbitration. International Journal of Algebra and Computation 7(2), 133–160 (1997)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhang, D., Foo, N., Meyer, T., Kwok, R.: Negotiation as mutual belief revision. In: Proceedings of the American National Conference on Artificial Intelligence (AAAI 2004), pp. 317–322 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sébastien Konieczny
    • 1
  • Ramón Pino Pérez
    • 2
  1. 1.CRIL - CNRS Faculté des SciencesUniversité d’ArtoisLensFrance
  2. 2.Departamento de Matemáticas Facultad de cienciasUniversidad de Los AndesMéridaVenezuela

Personalised recommendations