Counting Complexity of Minimal Cardinality and Minimal Weight Abduction

  • Miki Hermann
  • Reinhard Pichler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5293)


Abduction is an important method of non-monotonic reasoning with many applications in artificial intelligence and related topics. In this paper, we concentrate on propositional abduction, where the background knowledge is given by a propositional formula. We have recently started to study the counting complexity of propositional abduction. However, several important cases have been left open, namely, the cases when we restrict ourselves to solutions with minimal cardinality or with minimal weight. These cases – possibly combined with priorities – are now settled in this paper. We thus arrive at a complete picture of the counting complexity of propositional abduction.


Vertex Cover Minimal Solution Computation Path Minimal Cardinality Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theoretical Computer Science 340(3), 496–513 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the Association for Computing Machinery 42(1), 3–42 (1995)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Eiter, T., Makino, K.: On computing all abductive explanations. In: Proc. 18th AAAI, Edmonton, Alberta, Canada, pp. 62–67. AAAI Press, Menlo Park (2002)Google Scholar
  4. 4.
    Eiter, T., Makino, K.: Generating all abductive explanations for queries on propositional Horn theories. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 197–211. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases. In: Proc. 2nd PODS, Atlanta, Georgia, USA, pp. 352–365. ACM Press, New York (1983)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  7. 7.
    Gasarch, W.I., Krentel, M.W., Rappoport, K.J.: OptP as the normal behavior of NP-complete problems. Mathematical Systems Theory 28(6), 487–514 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hemaspaandra, L.A., Vollmer, H.: The satanic notations: Counting classes beyond #P and other definitional adventures. SIGACT News 26(1), 2–13 (1995)CrossRefGoogle Scholar
  9. 9.
    Hermann, M., Pichler, R.: Counting complexity of propositional abduction. In: Veloso, M.M. (ed.) Proc. 20th IJCAI 2007, Hyderabad, India, pp. 417–422. AAAI Press, Menlo Park (2007)Google Scholar
  10. 10.
    Hermann, M., Pichler, R.: Complexity of counting the optimal solutions. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 149–159. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Herzig, A., Lang, J., Marquis, P., Polacsek, T.: Updates, actions, and planning. In: Nebel, B. (ed.) Proc. 17th IJCAI 2001, Seattle, Washington, USA, pp. 119–124. Morgan Kaufmann, San Francisco (2001)Google Scholar
  12. 12.
    Kakas, A.C., Mancarella, P.: Database updates through abduction. In: McLeod, D., Sacks-Davis, R., Schek, H.-J. (eds.) Proc. 16th VLDB, Brisbane, Queensland, Australia, pp. 650–661. Morgan Kaufmann, San Francisco (1990)Google Scholar
  13. 13.
    Kozen, D.C.: The design and analysis of algorithms. In: Counting problems and #P, ch. 26, pp. 138–143. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Krentel, M.W.: The complexity of optimization problems. Journal of Computer and System Sciences 36(3), 490–509 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Krentel, M.W.: Generalizations of OptP to the polynomial hierarchy. Theoretical Computer Science 97(2), 183–198 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Papatheodorou, I., Kakas, A.C., Sergot, M.J.: Inference of gene relations from microarray data by abduction. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 389–393. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Peng, Y., Reggia, J.A.: Abductive inference models for diagnostic problem solving. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  18. 18.
    Poole, D.: Probabilistic Horn abduction and bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)zbMATHCrossRefGoogle Scholar
  19. 19.
    Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8(2), 189–201 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Miki Hermann
    • 1
  • Reinhard Pichler
    • 2
  1. 1.LIX (CNRS, UMR 7161), École PolytechniquePalaiseauFrance
  2. 2.Institut für InformationssystemeTechnische Universität WienWienAustria

Personalised recommendations