Advertisement

Abstract

Recent developments on mobile devices and networks enable new opportunities for mobile learning anywhere, anytime. Furthermore, recent advances on adaptive learning establish the foundations for personalized learning adapted to the characteristics of each individual learner. A mobile learner would perform an educational activity using the infrastructure (e.g. handheld devices, networks) in an environment (e.g. outdoors). In order to provide personalization, an adaptation engine adapts the educational activity and the infrastructure according to the context. The context is described by the learner’s state, the educational activity’s state, the infrastructure’s state, and the environment’s state. Furthermore, each one of these states is described by its dimensions. Many examples illustrate the adaptation decisions.

Keywords

adaptation adaptive learning context-aware knowledge society learner profile learner model mobile learning personalized learning pervasive learning ubiquitous learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davis, S.: Observations in classrooms using a network of handheld devices. Journal of Computer Assisted Learning 19, 298–307 (2003)CrossRefGoogle Scholar
  2. 2.
    Waycott, J., Kukulska-Hulme, A.: Students’ experience with PDAs for reading course materials. Personal and Ubiquitous Computing 7, 30–43 (2003)CrossRefGoogle Scholar
  3. 3.
    Sung, M., Gips, J., Eagle, N., Madan, A., Caneel, R., Devaul, R., Bonsen, J., Pentland, A.: Mobile-IT education (mit.edu): m-learning applications for classroom settings. Journal of Computer Assisted Learning 21, 229–237 (2005)CrossRefGoogle Scholar
  4. 4.
    Economides, A.A., Nikolaou, N.: Evaluation of handheld devices for mobile learning. International Journal of Engineering Education (IJEE) 24(1), 3–13 (2008)Google Scholar
  5. 5.
    Tatar, D., Roschelle, J., Vahey, P., Penuel, W.R.: Handhelds go to school: Lessons learned. IEEE Computer 36(9), 30–37 (2003)Google Scholar
  6. 6.
    Lytras, M.D., Sicilia, M.A.: The knowledge society: A manifesto for knowledge and learning. International Journal of Knowledge and Learning 1(1/2), 1–11 (2005)CrossRefGoogle Scholar
  7. 7.
    Schilit, B.N., Theimer, M.M., Welch, B.B.: Customizing mobile applications. In: Proceedings of the USENIX Symposium on Mobile and Location-Independent Computing (USENIX Association), August 1993, pp. 129–138 (1993)Google Scholar
  8. 8.
    Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proceedings of IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, California, December 1994, pp. 85–90. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  9. 9.
    Becker, C., Durr, F.: On location models for ubiquitous computing. Personal Ubiquitous Computing 9, 20–31 (2005)CrossRefGoogle Scholar
  10. 10.
    Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile hosts. IEEE Networks 8(5), 22–32 (1994)CrossRefGoogle Scholar
  11. 11.
    Ryan, N., Pascoe, J., Morse, D.: Enhanced reality fieldwork: the context-aware archaeological assistant. In: Computer Applications in Archaeology 1997, British Archaeological Reports, Oxford (October 1998)Google Scholar
  12. 12.
    Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location. Computers and Graphics Journal 23(6), 893–902 (1999)CrossRefGoogle Scholar
  13. 13.
    Dey, A.K., Abowd, G.: Towards a Better Understanding of Context and Context-Awareness. In: 2000 Conference on Human Factors in Computing Systems (CHI 2000), The Hague, The Netherlands, April 3 (2000)Google Scholar
  14. 14.
    Tamminen, S., Oulasvirta, T.K., Kankaninen, A.: Understanding mobile contexts. Personal and Ubiquitous Computing 8, 135–143 (2004)CrossRefGoogle Scholar
  15. 15.
    Bouzeghoub, A., Do, K.N., Lecocq, C.: A situation-based delivery of learning resources in pervasive learning. In: Duval, E., Klamma, R., Wolpers, M. (eds.) EC-TEL 2007. LNCS, vol. 4753, pp. 450–456. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Bayoumi, F.: Context aware systems: Present and Future. In: Proceedings of the IASTED European Conference, Internet and Multimedia Systems and Applications, Chamonix, France, pp. 208–213 (2007)Google Scholar
  17. 17.
    Uday Bhaskar, N., Govindarajulu, P.: A design methodology for acceptability analyzer in context aware adaptive mobile learning systems development. IJCSNS International Journal of Computer Science and Network Security 8(3), 130–138 (2008)Google Scholar
  18. 18.
    Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing 5, 4–7 (2001)CrossRefGoogle Scholar
  19. 19.
    Jameson, A.: Modelling both the context and the user. Personal and Ubiquitous Computing 5, 29–33 (2001)CrossRefGoogle Scholar
  20. 20.
    Petrelli, D., Not, E., Zancanaro, M., Strapparava, C., Stock, O.: Modelling and adapting to context. Personal and Ubiquitous Computing 5, 20–24 (2001)CrossRefGoogle Scholar
  21. 21.
    Indulska, J., Sutton, P.: Location management in pervasive systems. In: Johnson, C., Montague, P., Steketee, C. (eds.) Workshop on Wearable, Invisible, Context-Aware, Ambient, Pervasive and Ubiquitous Computing, Conferences in Research and practice in Information Technology, vol. 21. Australian Computer Society (2003)Google Scholar
  22. 22.
    Lonsdale, P., Baber, C., Sharples, M., Arvanitis, T.N.: A context awareness architecture for facilitating mobile learning. In: Proceedings MLEARN 2003 (2003)Google Scholar
  23. 23.
    Biegel, G., Cahill, V.: A framework for developing mobile, context-aware applications. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM 2004). IEEE, Los Alamitos (2004)Google Scholar
  24. 24.
    Raisinghani, et al.: Ambient intelligence: changing forms of human-computer interaction and their social implications. Journal of Digital Information, Article No. 271, 5(4) (2004)Google Scholar
  25. 25.
    Economides, A.A.: Requirements of mobile learning applications. International Journal of Innovation and Learning 5(5), 457–479 (2008)CrossRefGoogle Scholar
  26. 26.
    Martin, E., Carro, R.M., Rodriguez, P.: A mechanism to support context-based adaptation in m-learning. In: Neijdl, W., Tuchtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp. 302–315. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Berri, J., Benlamri, R., Atif, Y.: Ontology-based framework for context-aware mobile learningh. In: IWCMC 2006, Vancouver, British Columbia, July 2006, pp. 1307–1310. ACM, Canada (2006)CrossRefGoogle Scholar
  28. 28.
    Kekwaletswe, R.M., Ng’ambi, D.: Ubiquitous social presence: Context-awareness in a mobile learning environment. In: Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC 2006), pp. 1–6. IEEE, Los Alamitos (2006)Google Scholar
  29. 29.
    Basaeed, E.I., Berri, J., Zemerly, M.J., Benlamri, R.: Web-based context-aware m-learning architectyre. International Journal Interactive Mobile Technologies 1(1), 5–10 (2007)Google Scholar
  30. 30.
    Hu, B., Moore, P.: “SmartContext”: An ontology based context model for cooperative mobile learning. In: Shen, W., Luo, J.-Z., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.) CSCWD. LNCS, vol. 4402, pp. 717–726. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Albano, G., Gaeta, G., Salerno, S.: E-learning: A model and process proposal. International Journal of Knowledge and Learning 2(1/2), 73–88 (2006)CrossRefGoogle Scholar
  32. 32.
    Albano, G., Gaeta, G., Salerno, S.: IWT: An innovative solution for AGS e-learning model. International Journal of Knowledge and Learning 3(2/3), 209–224 (2007)CrossRefGoogle Scholar
  33. 33.
    Groth, K., Bogdan, C., Lindqvist, S., Sundblad, Y.: Simple and playful interaction for informal communication and learning. International Journal of Knowledge and Learning 3(2/3), 191–208 (2007)CrossRefGoogle Scholar
  34. 34.
    Yau, J., Joy, M.: Architecture of a context-aware and adaptive learning schedule for learning Java. In: Seventh IEEE International Conference on Advanced Learning Technologies (ICALT 2007), pp. 1–5. IEEE, Los Alamitos (2007)Google Scholar
  35. 35.
    Yau, J., Joy, M.: A context-aware and adaptive learning schedule framework for supporting learners’ daily routines. In: Second International Conference on Systems (ICONS 2007), pp. 1–6. IEEE, Los Alamitos (2007)Google Scholar
  36. 36.
    Porta, M.: E-learning and machine perception: In pursuit of human-line interaction in computer-based teaching systems. International Journal of Knowledge and Learning 3(2/3), 281–298 (2007)CrossRefGoogle Scholar
  37. 37.
    Economides, A.A.: Adaptive mobile learning. In: Proceedings IEEE WMUTE- 4th International Workshop on Wireless, Mobile and Ubiquitous Technologies in Education (2006), Athens, Greece, November 2006, pp. 26–28. IEEE, Los Alamitos (2006)CrossRefGoogle Scholar
  38. 38.
    Vasiliou, A., Economides, A.A.: MANET-based outdoor collaborative learning. In: Proceedings 3rd International Conference on Interactive Mobile and Computer Aided Learning (IMCL 2008), Amman, Jordan (2008)Google Scholar
  39. 39.
    Vasiliou, A., Economides, A.A.: Mobile collaborative learning using multicast MANETs. International Journal of Mobile Communications (IJMC) 5(4), 423–444 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anastasios A. Economides
    • 1
  1. 1.Information Systems DepartmentUniversity of MacedoniaThessalonikiGreece

Personalised recommendations