Deterministic Rendezvous in Trees with Little Memory

  • Pierre Fraigniaud
  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5218)


We study the size of memory of mobile agents that permits to solve deterministically the rendezvous problem, i.e., the task of meeting at some node, for two identical agents moving from node to node along the edges of an unknown anonymous connected graph. The rendezvous problem is unsolvable in the class of arbitrary connected graphs, as witnessed by the example of the cycle. Hence we restrict attention to rendezvous in trees, where rendezvous is feasible if and only if the initial positions of the agents are not symmetric. We prove that the minimum memory size guaranteeing rendezvous in all trees of size at most n is Θ(logn) bits. The upper bound is provided by an algorithm for abstract state machines accomplishing rendezvous in all trees, and using O(logn) bits of memory in trees of size at most n. The lower bound is a consequence of the need to distinguish between up to n − 1 links incident to a node. Thus, in the second part of the paper, we focus on the potential existence of pairs of finite agents (i.e., finite automata) capable of accomplishing rendezvous in all bounded degree trees. We show that, as opposed to what has been proved for the graph exploration problem, there are no finite agents capable of accomplishing rendezvous in all bounded degree trees.


Mobile Agent Memory Size Port Number Identical Agent Central Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223 (1979)Google Scholar
  2. 2.
    Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49, 256–274 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science. Kluwer Academic Publisher, Dordrecht (2002)Google Scholar
  5. 5.
    Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players. SIAM J. on Control and Optimization 33, 1270–1276 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable players. SIAM J. on Control and Optimization 33, 1637–1642 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)Google Scholar
  10. 10.
    Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Reaserch Logistics 48, 722–731 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal of Algorithms 8(5), 385–394 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications to on-line algorithms. In: Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC 1990), pp. 369–378 (1990)Google Scholar
  15. 15.
    Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. on Discrete Math. 6, 363–374 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51, 38–63 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for estimating volumes of convex bodies. In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 375–381 (1989)Google Scholar
  20. 20.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)zbMATHCrossRefGoogle Scholar
  22. 22.
    Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 585–594 (2007)Google Scholar
  23. 23.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. 9th Annual ACM Symposium on Principles of Distributed Computing (PODC 1990), pp. 119–131 (1990)Google Scholar
  24. 24.
    Kowalski, D., Malinowski, A.: How to meet in anonymous network. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Memory. In: Proc. 8th Latin American Theoretical INformatics (LATIN) (2008)Google Scholar
  26. 26.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)Google Scholar
  27. 27.
    Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)Google Scholar
  29. 29.
    Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)zbMATHGoogle Scholar
  30. 30.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pierre Fraigniaud
    • 1
  • Andrzej Pelc
    • 2
  1. 1.CNRS and University Paris Diderot 
  2. 2.Département d’informatiqueUniversité du Québec en Outaouais 

Personalised recommendations