Interactions of Paenibacillus sp. and Sulfolobus acidocaldarius strains with U(VI)

  • Thomas Reitz
  • Mohamed L. Merroun
  • Sonja Selenska-Pobell


The interactions of U(VI) with one representative each of the domains Bacteria and Archaea are compared. Our results demonstrate that U(VI) is bound by the cells of both microbial strains predominantly through phosphate groups. However, the comparison of the binding capacities and the structural parameters of the formed U(VI) complexes reveals significant differences. In the case of the bacterial strain Paenibacillus sp. JG-TB8, U(VI) is precipitated as a uranyl phosphate mineral phase. In contrast, organic phosphate groups are responsible for the U(VI) complexation by the archaeal strain Sulfolobus acidocaldariusDSM 639.


Acidithiobacillus Ferrooxidans European Synchrotron Radiation Facility Session Versus Uranyl Phosphate Multiple Scattering Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ankudinov A L, Ravel B, Rehr J J, Conradson S D (1998) Real-space multiple-scattering calculation and interpretation of X-ray absorption near-edge spectra. Phys Rev B 58: 7565-7575CrossRefGoogle Scholar
  2. Brock T D, Brock K M, Belly R T, Weiss R L (1972) Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84: 54-68CrossRefGoogle Scholar
  3. Ferris F G, Beveridge T J (1986) Site specificity of metallic ion binding in Escherichia coli K-12 lipopolysaccharide. Can J Microbiol 32: 52-55CrossRefGoogle Scholar
  4. George G N, Pickering I J (1995) EXAFSPAK: A suite of computer programs for analysis of X-ray absorption spectra. Stanford Synchrotron Radiation Laboratory, Stanford, CA, USAGoogle Scholar
  5. Hagen M, Jakubick A T (2005) Returning the Wismut legacy to productive use. In: Uranium in the environment, Springer Verlag, Berlin, Germany: 11-26Google Scholar
  6. Hennig C, Panak P, Reich T, Ro{\ss}berg A, Raff J, Selenska-Pobell S, Matz W, Bucher J J, Bernhard G, Nitsche H (2001) EXAFS investigation of uranium(VI) complexes formed at Bacillus cereus and Bacillus sphaericus surfaces. Radiochim Acta 89: 625-631CrossRefGoogle Scholar
  7. Hudson E A, Allen P G, Terminello L J (1996) Polarized X-ray absorption spectroscopy of the uranyl ion: comparison of experiment and theory. Phys Rev B 54: 156-165CrossRefGoogle Scholar
  8. Koban A, Geipel G, Roβberg A, Bernhard G (2004) Uranium(VI) complexes with sugar phosphates in aqueous solution. Radiochim Acta 92: 903-908CrossRefGoogle Scholar
  9. Lloyd J R, Macaskie L E (2002) Biochemical basis of microbe-radionuclide interactions. In: Interactions of bacteria with radionuclides. Elsevier Science, Oxford, UK: 313-342CrossRefGoogle Scholar
  10. Makarov E S, Ivanov V I (1960) The crystal structure of meta-autunite, Ca(UO2)2(PO4)2 multdot; 6H2O. Doklady Akademi Nauk SSSR 132: 573-577Google Scholar
  11. Martinez R J, Beazley M J, Taillefert M, Arakaki A K, Skolnick J, Sobecky P A (2007) Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Environ Microbiol 9: 3122-3133CrossRefGoogle Scholar
  12. Matz W, Schell N, Bernhard G, Prokert F, Reich T, Clauβner J, Oehme W, Schlenk R, Dienel S, Funke H, Eichhorn F, Betzel M, Pröhl D, Strauch U, Hüttig G, Krug H, Neumann W, Brendler V, Reichel P, Denecke M A, Nitsche H (1999). ROBL- a CRG beamline for radiochemistry and material research at the ESRF. J Synchrotron Rad 6: 1076-1085CrossRefGoogle Scholar
  13. Merroun, M L, Hennig C, Rossberg A, Geipel G, Reich T, Selenska-Pobell S (2002) Molecular and atomic analysis of the uranium complexes formed by three eco-types of Acidithiobacillus ferrooxidans. Biochem Sc Trans 30: 669-672CrossRefGoogle Scholar
  14. Merroun, M L, Hennig C, Rossberg A, Reich T, Selenska-Pobell S (2003) Characterization of U(VI)-Acidithiobacillus ferrooxidans complexes by using EXAFS, transmission electron microscopy and energy-dispersive X-ray analysis. Radiochim Acta 91: 583-591CrossRefGoogle Scholar
  15. Merroun, M L, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2004) Interaction of U(VI) with bacterial strains isolated form uranium mining piles: spectroscopic and microscopic studies. Geochim Cosmochim Acta 68: A499Google Scholar
  16. Merroun, M L, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71: 5542-5553CrossRefGoogle Scholar
  17. Pedersen K (2005) Microorganisms and their influence on radionuclide migration in igneous rock environments. J Nucl Radiochim Sci 6: 11-15Google Scholar
  18. Selenska-Pobell S (2002) Diversity and activity of bacteria in uranium waste piles. In: Interactions of microorganisms with radionuclides. Elsevier, Oxford, UK: 225-254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Reitz
    • 1
  • Mohamed L. Merroun
    • 1
  • Sonja Selenska-Pobell
    • 1
  1. 1.Forschungszentrum Dresden-Rossendorf, Institute of RadiochemistryDresdenGermany

Personalised recommendations