Advertisement

Understanding Uranium Migration in Hard Rocks

  • W. Eberhard Falck
  • David Read
  • S. Black
  • D. Thornley
  • M. Markovaara-Koivisto
  • M. Siitari-Kauppi

Abstract

Uranium is a major radioactive constituent of spent nuclear fuel and high-level radioactive waste. However, its migration behaviour in crystalline rocks is still inadequately understood. This paper describes the results of controlled laboratory migration experiments and attempts made to simulate them using numerical models. Initial models employing generic information in “blind predictions” are progressively enhanced by data-supported interpretation. Such an approach is intended to mimic the stages of a site assessment, where conceptual and numerical models are progressively refined.

Keywords

Hard Rock Effective Porosity Spend Nuclear Fuel Precipitation Kinetic Dispersion Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann N, Arnold T, Geipel G, Trueman E, Black S, Read, D (2006). Detection of U(VI) on the surface of altered depleted uranium by TRLFS. Sci.. Tot Env. 366, 905-909.CrossRefGoogle Scholar
  2. Bruno J, Arcos D, Duro L (1999) Processes and features affecting the near field hydrochemistry. Groundwater-Bentonite interaction. SKB Tech. Rep. TR-99-29, 56 p.Google Scholar
  3. Finch R, Cooper M, Hawthorne F, Ewing R (1996) The crystal structure of schoepite [(UO2)8O2(OH)12](H2O)12. Canadian Mineral. 34: 1071-1088.Google Scholar
  4. Jang J-H, Dempsey B, Burgos W (2006) Solubility of schoepite: Comparison and selection of complexation constants for U(VI). Water Res. 40(14): 2738-2746.CrossRefGoogle Scholar
  5. Parkhurst D, Appelo C (1999) User’s guide to PHREEQC–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99-4259.Google Scholar
  6. Read D (1991) CHEMVAL Project: Testing of coupled chemical transport models. CEC Report EUR13675.Google Scholar
  7. Svensk Kärnbränslehantering AB (2006) Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation. Main report of the SR-Can project. Report SKB TR-06-09, 613 p.Google Scholar
  8. Trueman E, Black S, Read D, Hodson M (2003). Alteration of depleted uranium metal. Geochim. Cosmochim. Acta, 67, A493.Google Scholar
  9. Trueman, E, Black S, Read D. (2004) Characterisation of depleted uranium (DU) from an unfired CHARM-3 penetrator. Sci. Tot. Env. 327, 337-340.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • W. Eberhard Falck
    • 1
  • David Read
    • 2
  • S. Black
    • 3
  • D. Thornley
    • 1
  • M. Markovaara-Koivisto
    • 1
  • M. Siitari-Kauppi
    • 4
  1. 1.Institute for EnergyJRC, European Commission PettenThe Netherlands
  2. 2.Enterpris and University of AberdeenUK
  3. 3.University of Reading WhiteknightsReadingUK
  4. 4.Helsinki University of TechnologyFinland

Personalised recommendations