Deterministic Sampling Algorithms for Network Design

  • Anke van Zuylen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5193)


For several NP-hard network design problems, the best known approximation algorithms are remarkably simple randomized algorithms called Sample-Augment algorithms in [11]. The algorithms draw a random sample from the input, solve a certain subproblem on the random sample, and augment the solution for the subproblem to a solution for the original problem. We give a general framework that allows us to derandomize most Sample-Augment algorithms, i.e. to specify a specific sample for which the cost of the solution created by the Sample-Augment algorithm is at most a constant factor away from optimal. Our approach allows us to give deterministic versions of the Sample-Augment algorithms for the connected facility location problem, in which the open facilities need to be connected by either a tree or a tour, the virtual private network design problem, 2-stage rooted stochastic Steiner tree problem with independent decisions, the a priori traveling salesman problem and the single sink buy-at-bulk problem. This partially answers an open question posed in Gupta et al. [11].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual private network design. In: SODA, pp. 928–932 (2005)Google Scholar
  2. 2.
    Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual private network design. SIAM J. Comput. 37(3), 706–721 (2007)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating connected facility location problems via random facility sampling and core detouring. In: SODA, pp. 1174–1183 (2008)Google Scholar
  4. 4.
    Erdős, P., Spencer, J.: Probabilistic methods in combinatorics. Academic Press, London (1974)Google Scholar
  5. 5.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. System Sci. 69(3), 485–497 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online combinatorial optimization problems. In: SODA, pp. 942–951 (2008)Google Scholar
  7. 7.
    Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: On the integrality gap of a natural formulation of the single-sink buy-at-bulk network design problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 170–184. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Goemans, M.X., Bertsimas, D.J.: Survivable networks, linear programming relaxations and the parsimonious property. Math. Program. 60(2, Ser. A), 145–166 (1993)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Grandoni, F., Italiano, G.F.: Improved approximation for single-sink buy-at-bulk. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 111–120. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost-sharing: A simple approximation algorithm for the multicommodity rent-or-buy problem. In: FOCS, pp. 606–615 (2003)Google Scholar
  11. 11.
    Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: simpler and better approximation algorithms for network design. J. ACM 54(3), 11 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network design. In: STOC, pp. 365–372 (2003)Google Scholar
  13. 13.
    Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algorithms for stochastic optimization. In: STOC, pp. 417–426 (2004)Google Scholar
  14. 14.
    Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. Algorithmica 50(1), 98–119 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hasan, M.K., Jung, H., Chwa, K.-Y.: Approximation algorithms for connected facility location problems. J. Comb. Optim. (to appear, 2008)Google Scholar
  16. 16.
    Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of procrastination: approximation algorithms for stochastic combinatorial optimization problems. In: SODA, pp. 691–700 (2004)Google Scholar
  17. 17.
    Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. Comput. System Sci. 37(2), 130–143 (1988)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shmoys, D., Talwar, K.: A constant approximation algorithm for the a priori traveling salesman problem. In: IPCO (2008)Google Scholar
  19. 19.
    Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp TSP bound: A monotonicity property with application. Inf. Process. Lett. 35, 281–285 (1990)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Talwar, K.: The single-sink buy-at-bulk LP has constant integrality gap. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 475–486. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Williamson, D.P., van Zuylen, A.: A simpler and better derandomization of an approximation algorithm for single source rent-or-buy. Oper. Res. Lett. 35(6), 707–712 (2007)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math. Prog. Study 13, 121–134 (1980)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anke van Zuylen
    • 1
  1. 1.School of Operations Research and Information EngineeringCornell UniversityIthaca

Personalised recommendations