Deterministic Sampling Algorithms for Network Design

  • Anke van Zuylen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5193)


For several NP-hard network design problems, the best known approximation algorithms are remarkably simple randomized algorithms called Sample-Augment algorithms in [11]. The algorithms draw a random sample from the input, solve a certain subproblem on the random sample, and augment the solution for the subproblem to a solution for the original problem. We give a general framework that allows us to derandomize most Sample-Augment algorithms, i.e. to specify a specific sample for which the cost of the solution created by the Sample-Augment algorithm is at most a constant factor away from optimal. Our approach allows us to give deterministic versions of the Sample-Augment algorithms for the connected facility location problem, in which the open facilities need to be connected by either a tree or a tour, the virtual private network design problem, 2-stage rooted stochastic Steiner tree problem with independent decisions, the a priori traveling salesman problem and the single sink buy-at-bulk problem. This partially answers an open question posed in Gupta et al. [11].


Network Design Conditional Expectation Travel Salesman Problem Steiner Tree Network Design Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual private network design. In: SODA, pp. 928–932 (2005)Google Scholar
  2. 2.
    Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual private network design. SIAM J. Comput. 37(3), 706–721 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating connected facility location problems via random facility sampling and core detouring. In: SODA, pp. 1174–1183 (2008)Google Scholar
  4. 4.
    Erdős, P., Spencer, J.: Probabilistic methods in combinatorics. Academic Press, London (1974)Google Scholar
  5. 5.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. System Sci. 69(3), 485–497 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online combinatorial optimization problems. In: SODA, pp. 942–951 (2008)Google Scholar
  7. 7.
    Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: On the integrality gap of a natural formulation of the single-sink buy-at-bulk network design problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 170–184. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Goemans, M.X., Bertsimas, D.J.: Survivable networks, linear programming relaxations and the parsimonious property. Math. Program. 60(2, Ser. A), 145–166 (1993)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Grandoni, F., Italiano, G.F.: Improved approximation for single-sink buy-at-bulk. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 111–120. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost-sharing: A simple approximation algorithm for the multicommodity rent-or-buy problem. In: FOCS, pp. 606–615 (2003)Google Scholar
  11. 11.
    Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: simpler and better approximation algorithms for network design. J. ACM 54(3), 11 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network design. In: STOC, pp. 365–372 (2003)Google Scholar
  13. 13.
    Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algorithms for stochastic optimization. In: STOC, pp. 417–426 (2004)Google Scholar
  14. 14.
    Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. Algorithmica 50(1), 98–119 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hasan, M.K., Jung, H., Chwa, K.-Y.: Approximation algorithms for connected facility location problems. J. Comb. Optim. (to appear, 2008)Google Scholar
  16. 16.
    Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of procrastination: approximation algorithms for stochastic combinatorial optimization problems. In: SODA, pp. 691–700 (2004)Google Scholar
  17. 17.
    Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. Comput. System Sci. 37(2), 130–143 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shmoys, D., Talwar, K.: A constant approximation algorithm for the a priori traveling salesman problem. In: IPCO (2008)Google Scholar
  19. 19.
    Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp TSP bound: A monotonicity property with application. Inf. Process. Lett. 35, 281–285 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Talwar, K.: The single-sink buy-at-bulk LP has constant integrality gap. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 475–486. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Williamson, D.P., van Zuylen, A.: A simpler and better derandomization of an approximation algorithm for single source rent-or-buy. Oper. Res. Lett. 35(6), 707–712 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math. Prog. Study 13, 121–134 (1980)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anke van Zuylen
    • 1
  1. 1.School of Operations Research and Information EngineeringCornell UniversityIthaca

Personalised recommendations