On the Size of the 3D Visibility Skeleton: Experimental Results

  • Linqiao Zhang
  • Hazel Everett
  • Sylvain Lazard
  • Christophe Weibel
  • Sue Whitesides
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5193)


The 3D visibility skeleton is a data structure used to encode global visibility information about a set of objects. Previous theoretical results have shown that for k convex polytopes with n edges in total, the worst case size complexity of this data structure is Θ(n 2 k 2) [Brönnimann et al. 07]; whereas for k uniformly distributed unit spheres, the expected size is Θ(k) [Devillers et al. 03].

In this paper, we study the size of the visibility skeleton experimentally. Our results indicate that the size of the 3D visibility skeleton, in our setting, is \( C\,k\sqrt{n\,k}\), where C varies with the scene density but remains small. This is the first experimentally determined asymptotic estimate of the size of the 3D visibility skeleton for reasonably large n and expressed in terms of both n and k. We suggest theoretical explanations for the experimental results we obtained. Our experiments also indicate that the running time of our implementation is O(n 3/2 klogk), while its worst-case running time complexity is O(n 2 k 2 logk).


Visibility Complex Input Scene Support Edge Sweep Plane Support Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelier, P., Pocchiola, M.: CGAL-based implementation of visibility complexes. Technical Report ECG-TR-241207-01, Effective Computational Geometry for Curves and Surfaces (ECG) (2003)Google Scholar
  2. 2.
    Brönnimann, H., Devillers, O., Dujmovic, V., Everett, H., Glisse, M., Goaoc, X., Lazard, S., Na, H.-S., Whitesides, S.: Lines and free line segments tangent to arbitrary three-dimensional convex polyhedra. SIAM Journal on Computing 37(2), 522–551 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    CGAL: Computational Geometry Algorithms Library,
  4. 4.
    The CORE library,
  5. 5.
    Demouth, J.: Événements visuels et limites d’ombres. PhD thesis, Université Nancy 2 (to appear, 2008)Google Scholar
  6. 6.
    Devillers, O., Dujmović, V., Everett, H., Goaoc, X., Lazard, S., Na, H.-S., Petitjean, S.: The expected number of 3D visibility events is linear. SIAM Journal on Computing 32(6), 1586–1620 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Duguet, F., Drettakis, G.: Robust epsilon visibility. In: Hughes, J. (ed.) Proceedings of ACM SIGGRAPH 2002, pp. 567–575. ACM Press / ACM SIGGRAPH (July 2002)Google Scholar
  8. 8.
    Durand, F., Drettakis, G., Puech, C.: The visibility skeleton: a powerful and efficient multi-purpose global visibility tool. Computer Graphics Proceedings, Annual Conference Series 31, 89–100 (1997); Proceedings of Siggraph 1997Google Scholar
  9. 9.
    Durand, F., Drettakis, G., Puech, C.: Fast and accurate hierarchical radiosity using global visibility. ACM Transactions on Graphics 18(2), 128–170 (1999)CrossRefGoogle Scholar
  10. 10.
    Durand, F., Drettakis, G., Puech, C.: The 3D visibility complex. ACM Transactions on Graphics 21(2), 176–206 (2002)CrossRefGoogle Scholar
  11. 11.
    Efrat, A., Guibas, L., Hall-Holt, O., Zhang, L.: On incremental rendering of silhouette maps of a polyhedral scene. Comput. Geom.: Theory and App. 38(3), 129–138 (2007)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Everett, H., Lazard, S., Lenhart, B., Zhang, L.: On the degree of standard geometric predicates for line transversals in 3D. Comput. Geom.: Theory and App. (to appear, 2008)Google Scholar
  13. 13.
    Everett, H., Lazard, S., Petitjean, S., Zhang, L.: On the expected size of the 2D visibility complex. Int. J. of Comput. Geom. and App. 17(4), 361–382 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Glaves, L.: An exploration of the 3D visibility complex. Master’s thesis, Polytechnic University, Brooklyn, NY (2007)Google Scholar
  15. 15.
    Glisse, M.: Combinatoire des droites et segments pour la visibilité 3D. PhD thesis, Université Nancy 2 (October 2007)Google Scholar
  16. 16.
    Glisse, M., Lazard, S.: An upper bound on the average size of silhouettes. Discrete and Computational Geometry (to appear, 2008)Google Scholar
  17. 17.
    Goaoc, X.: Structures de visibilité globales: tailles, calculs et dégénérescences. PhD thesis, Université Nancy 2 (May 2004)Google Scholar
  18. 18.
    Kettner, L., Welzl, E.: Contour edge analysis for polyhedron projections. In: Strasser, W., Klein, R., Rau, R. (eds.) Geometric Modeling: Theory and Practice, pp. 379–394. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Plantinga, H., Dyer, C.: Visibility, occlusion, and the aspect graph. International Journal of Computer Vision 5(2), 137–160 (1990)CrossRefGoogle Scholar
  20. 20.
    Platonova, O.A.: Singularities of relative position of a surface and a line. Uspekhi Mat. Nauk 36(1), 221–222 (1981); Russian Math. Surveys 36(1), 248–249 (1981)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Pocchiola, M., Vegter, G.: The visibility complex. Int. J. of Comput. Geom. and App. 6(3), 279–308 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schröder, A.: Globale Sichtbarkeitsalgorithmend. PhD thesis, Philipps-Universität Marburg (June 2003)Google Scholar
  23. 23.
    Zhang, L., Everett, H., Lazard, S., Whitesides, S.: Towards an implementation of the 3D visibility skeleton. In: Proceedings of the 23rd ACM Annual Symposium on Computational Geometry (SoCG 2007), S. Korea, pp. 131–132 (2007); VideoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Linqiao Zhang
    • 1
  • Hazel Everett
    • 2
  • Sylvain Lazard
    • 2
  • Christophe Weibel
    • 3
  • Sue Whitesides
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada
  2. 2.INRIA Nancy Grand EstUniversité Nancy 2, LORIANancyFrance
  3. 3.Math DepartmentMcGill UniversityMontrealCanada

Personalised recommendations