Advertisement

Locality and Bounding-Box Quality of Two-Dimensional Space-Filling Curves

  • Herman Haverkort
  • Freek van Walderveen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5193)

Abstract

Space-filling curves can be used to organise points in the plane into bounding-box hierarchies (such as R-trees). We develop measures of the bounding-box quality of space-filling curves that express how effective different curves are for this purpose. We give general lower bounds on the bounding-box quality and on locality according to Gotsman and Lindenbaum for a large class of curves. We describe a generic algorithm to approximate these and similar quality measures for any given curve. Using our algorithm we find good approximations of the locality and bounding-box quality of several known and new space-filling curves. Surprisingly, some curves with bad locality by Gotsman and Lindenbaum’s measure, have good bounding-box quality, while the curve with the best-known locality has relatively bad bounding-box quality.

Keywords

Curve Section Unit Region Query Response Time Outer Corner Perimeter Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, J., Niedermeier, R.: On multidimensional curves with Hilbert property. Theory of Computing Systems 33(4), 295–312 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.: Space-Filling Curves and Their Use in the Design of Geometric Data Structures. Theor. Comput. Sci. 181(1), 3–15 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bauman, K.E.: The dilation factor of the Peano-Hilbert curve. Math. Notes 80(5), 609–620 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chochia, G., Cole, M., Heywood, T.: Implementing the hierarchical PRAM on the 2D mesh: Analyses and experiments. In: Symp. on Parallel and Distributed Processing, pp. 587–595 (1995)Google Scholar
  5. 5.
    Gardner, M.: Mathematical Games—In which “monster” curves force redefinition of the word “curve”. Scientific American 235(6), 124–133 (1976)CrossRefGoogle Scholar
  6. 6.
    Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Trans. Image Processing 5(5), 794–797 (1996)CrossRefGoogle Scholar
  7. 7.
    Haverkort, H., van Walderveen, F.: Locality and bounding-box quality of two-dimensional space-filling curves (manuscript, 2008) arXiv:0806.4787 [cs.CG]Google Scholar
  8. 8.
    Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann. 38(3), 459–460 (1891)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kamel, I., Faloutsos, C.: On packing R-trees. In: Conf. on Information and Knowledge Management, pp. 490–499 (1993)Google Scholar
  10. 10.
    Lebesgue, H.L.: Leçons sur l’intégration et la recherche des fonctions primitives, pp. 44–45. Gauthier-Villars (1904)Google Scholar
  11. 11.
    von Luxburg, U.: Lokalitätsmaße von Peanokurven. Student project report, Universität Tübingen, Wilhelm-Schickard-Institut für Informatik (1998)Google Scholar
  12. 12.
    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-trees: Theory and Applications. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-indexings. Discrete Applied Mathematics 117, 211–237 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Niedermeier, R., Sanders, P.: On the Manhattan-distance between points on space-filling mesh-indexings. Technical Report IB 18/96, Karlsruhe University, Dept. of Computer Science (1996)Google Scholar
  15. 15.
    Peano, G.: Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36(1), 157–160 (1890)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Sagan, H.: Space-Filling Curves. Universitext series. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  17. 17.
    Wierum, J.-M.: Definition of a new circular space-filling curve: βΩ-indexing. Technical Report TR-001-02, Paderborn Center for Parallel Computing (PC2) (2002)Google Scholar
  18. 18.
    Wunderlich, W.: Über Peano-Kurven. Elemente der Mathematik 28(1), 1–10 (1973)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Herman Haverkort
    • 1
  • Freek van Walderveen
    • 1
  1. 1.Dept. of Computer ScienceEindhoven University of Technologythe Netherlands

Personalised recommendations