The Partial Augment–Relabel Algorithm for the Maximum Flow Problem

  • Andrew V. Goldberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5193)


The maximum flow problem is a classical optimization problem with many applications. For a long time, HI-PR, an efficient implementation of the highest-label push-relabel algorithm, has been a benchmark due to its robust performance. We propose another variant of the push-relabel method, the partial augment-relabel (PAR) algorithm. Our experiments show that PAR is very robust. It outperforms HI-PR on all problem families tested, asymptotically in some cases.


Network Flow Distance Label Current Vertex Admissible Path Active Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  2. 2.
    Anderson, R.J., Setubal, J.C.: Goldberg’s Algorithm for the Maximum Flow in Perspective: a Computational Study. In: Johnson, D.S., McGeoch, C.C. (eds.) Network Flows and Matching: First DIMACS Implementation Challenge, pp. 1–18. AMS (1993)Google Scholar
  3. 3.
    Babenko, M.A., Goldberg, A.V.: Experimental Evaluation of a Parametric Flow Algorithm. Technical Report MSR-TR-2006-77, Microsoft Research (2006)Google Scholar
  4. 4.
    Badics, T., Boros, E.: Implementing a Maximum Flow Algorithm: Experiments with Dynamic Trees. In: Johnson, D.S., McGeoch, C.C. (eds.) Network Flows and Matching: First DIMACS Implementation Challenge, pp. 65–96. AMS (1993)Google Scholar
  5. 5.
    Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  6. 6.
    Boykov, Y., Veksler, O.: Graph Cuts in Vision and Graphics: Theories and Applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 109–131. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Chandran, B., Hochbaum, D.: A computational study of the pseudoflow and push-relabel algorithms for the maximum flow problem (submitted, 2007)Google Scholar
  8. 8.
    Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental Study of Minimum Cut Algorithms. In: Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, pp. 324–333 (1997)Google Scholar
  9. 9.
    Cheriyan, J., Maheshwari, S.N.: Analysis of Preflow Push Algorithms for Maximum Network Flow. SIAM J. Comput. 18, 1057–1086 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cherkassky, B.V.: A Fast Algorithm for Computing Maximum Flow in a Network. In: Karzanov, A.V. (ed.) Collected Papers. Combinatorial Methods for Flow Problems, vol. 3, pp. 90–96. The Institute for Systems Studies, Moscow (1979) (in russian); English translation appears in AMS Trans., vol.158, pp. 23–30 (1994)Google Scholar
  11. 11.
    Cherkassky, B.V., Goldberg, A.V.: On Implementing Push-Relabel Method for the Maximum Flow Problem. Algorithmica 19, 390–410 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dantzig, G.B.: Application of the Simplex Method to a Transportation Problem. In: Koopmans, T.C. (ed.) Activity Analysis and Production and Allocation, pp. 359–373. Wiley, New York (1951)Google Scholar
  13. 13.
    Derigs, U., Meier, W.: An Evaluation of Algorithmic Refinements and Proper Data-Structures for the Preflow-Push Approach for Maximum Flow. In: ASI Series on Computer and System Sciences vol. 8, pp. 209–223. NATO (1992)Google Scholar
  14. 14.
    Dinic, E.A.: Metod porazryadnogo sokrashcheniya nevyazok i transportnye zadachi. In: Issledovaniya po Diskretnoĭ Matematike, Nauka, Moskva (1973) (in russian); Title translation: Excess Scaling and Transportation ProblemsGoogle Scholar
  15. 15.
    Edmonds, J., Karp, R.M.: Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach. 19, 248–264 (1972)zbMATHGoogle Scholar
  16. 16.
    Ford, L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal of Math. 8, 399–404 (1956)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Goldberg, A.V.: Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., January 1987. Technical Report TR-374, Lab. for Computer Science, M.I.T (1987)Google Scholar
  18. 18.
    Goldberg, A.V.: An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm. J. Algorithms 22, 1–29 (1997)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Goldberg, A.V., Rao, S.: Beyond the Flow Decomposition Barrier. J. Assoc. Comput. Mach. 45, 753–782 (1998)MathSciNetGoogle Scholar
  20. 20.
    Goldberg, A.V., Tarjan, R.E.: A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach. 35, 921–940 (1988)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Goldfarb, D., Grigoriadis, M.D.: A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow. Annals of Oper. Res. 13, 83–123 (1988)MathSciNetGoogle Scholar
  22. 22.
    Hagerup, T., Sanders, P., Träff, J.L̃.: An implementation of the binary blocking flow algorithm. Algorithm Engineering, 143–154 (1998)Google Scholar
  23. 23.
    Johnson, D.S., McGeoch, C.C.: Network Flows and Matching: First DIMACS Implementation Challenge. In: AMS. Proceedings of the 1-st DIMACS Implementation Challenge (1993)Google Scholar
  24. 24.
    Karzanov, A.V.: Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok. 15, 434–437 (1974)zbMATHGoogle Scholar
  25. 25.
    King, V., Rao, S., Tarjan, R.: A Faster Deterministic Maximum Flow Algorithm. J. Algorithms 17, 447–474 (1994)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mehlhorn, K., Naher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  27. 27.
    Nguyen, Q.C., Venkateswaran, V.: Implementations of Goldberg-Tarjan Maximum Flow Algorithm. In: Johnson, D.S., McGeoch, C.C. (eds.) Network Flows and Matching: First DIMACS Implementation Challenge, pp. 19–42. AMS (1993)Google Scholar
  28. 28.
    Ogielski, A.T.: Integer Optimization and Zero-Temperature Fixed Point in Ising Random-Field Systems. Phys. Rev. Lett. 57, 1251–1254 (1986)CrossRefGoogle Scholar
  29. 29.
    Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. J. Comput. System Sci. 26, 362–391 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tuncel, L.: On the Complexity of Preflow-Push Algorithms for Maximum-Flow Problems. Algorithmica 11, 353–359 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrew V. Goldberg
    • 1
  1. 1.Microsoft Research – Silicon ValleyMountain View

Personalised recommendations