The Alcuin Number of a Graph

  • Péter Csorba
  • Cor A. J. Hurkens
  • Gerhard J. Woeginger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5193)

Abstract

We consider a planning problem that generalizes Alcuin’s river crossing problem (also known as: The wolf, goat, and cabbage puzzle) to scenarios with arbitrary conflict graphs. We derive a variety of combinatorial, structural, algorithmical, and complexity theoretical results around this problem.

Keywords

Transportation problem scheduling graph theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ascher, M.: A river-crossing problem in cross-cultural perspective. Mathematics Magazine 63, 26–29 (1990)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bahls, P.: The wolf, the goat, and the cabbage: A modern twist on a classical problem. University of North Carolina, Asheville (unpublished manuscript, 2005)Google Scholar
  3. 3.
    Biggs, N.L.: The roots of combinatorics. Historia Mathematica 6, 109–136 (1979)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borndörfer, R., Grötschel, M., Löbel, A.: Alcuin’s transportation problems and integer programming. In: Charlemagne and his heritage. 1200 years of civilization and science in Europe, Brepols, Turnhout, vol. 2, pp. 379–409 (1998)Google Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  6. 6.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)MATHGoogle Scholar
  7. 7.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, New York (1988)MATHGoogle Scholar
  8. 8.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. Journal of Computer and System Sciences 74, 335–349 (2008)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lampis, M., Mitsou, V.: The ferry cover problem. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 227–239. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland, Amsterdam (1986)MATHGoogle Scholar
  11. 11.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, New York (2006)MATHGoogle Scholar
  12. 12.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  13. 13.
    Prisner, E.: Generalizing the wolf-goat-cabbage problem. Electronic Notes in Discrete Mathematics 27, 83 (2006)CrossRefGoogle Scholar
  14. 14.
    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory, Series B 80, 346–355 (2000)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Péter Csorba
    • 1
  • Cor A. J. Hurkens
    • 1
  • Gerhard J. Woeginger
    • 1
  1. 1.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations