A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling

  • Vincenzo Bonifaci
  • Alberto Marchetti-Spaccamela
  • Sebastian Stiller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5193)

Abstract

We devise the first constant-approximate feasibility test for sporadic multiprocessor real-time scheduling. We give an algorithm that, given a task system and ε> 0, correctly decides either that the task system can be scheduled using the earliest deadline first algorithm on m speed-(2 − 1/m + ε) machines, or that the system is infeasible for m speed-1 machines. The running time of the algorithm is polynomial in the size of the task system and 1/ε. We also provide an improved bound trading off speed for additional machines.

Our analysis relies on a new concept for counting the workload of an interval, that might also turn useful for analyzing other types of task systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, K., Slomka, F.: An event stream driven approximation for the analysis of real-time systems. In: Proc. 16th Euromicro Conference on Real-Time Systems, pp. 187–195 (2004)Google Scholar
  2. 2.
    Albers, K., Slomka, F.: Efficient feasibility analysis for real-time systems with EDF scheduling. In: Proc. Conf. on Design, Automation and Test in Europe, pp. 492–497 (2005)Google Scholar
  3. 3.
    Baker, T.P.: An analysis of EDF schedulability on a multiprocessor. IEEE Trans. Parallel Distrib. Syst. 16(8), 760–768 (2005)CrossRefGoogle Scholar
  4. 4.
    Baker, T.P., Baruah, S.K.: Schedulability analysis of multiprocessor sporadic task systems. In: Son, S.H., Lee, I., Leung, J.Y.-T. (eds.) Handbook of Real-Time and Embedded Systems. CRC Press, Boca Raton (2007)Google Scholar
  5. 5.
    Baruah, S.K., Howell, R.R., Rosier, L.E.: Feasibility problems for recurring tasks on one processor. Theor. Comput. Sci. 118(1), 3–20 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chakraborty, S., Künzli, S., Thiele, L.: Approximate schedulability analysis. In: Proc. 23rd IEEE Real-Time Systems Symp., pp. 159–168 (2002)Google Scholar
  7. 7.
    Dertouzos, M.L.: Control robotics: The procedural control of physical processes. In: Proc. IFIP Congress, pp. 807–813 (1974)Google Scholar
  8. 8.
    Fisher, N., Baruah, S.K.: A fully polynomial-time approximation scheme for feasibility analysis in static-priority systems with arbitrary relative deadlines. In: Proc. 17th Euromicro Conference on Real-Time Systems, pp. 117–126 (2005)Google Scholar
  9. 9.
    Lam, T.W., To, K.-K.: Trade-offs between speed and processor in hard-deadline scheduling. In: Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 623–632 (1999)Google Scholar
  10. 10.
    Leung, J.Y.-T., Merrill, M.L.: A note on preemptive scheduling of periodic, real-time tasks. Inf. Process. Lett. 11(3), 115–118 (1980)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmentation. Algorithmica 32(2), 163–200 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vincenzo Bonifaci
    • 1
    • 2
  • Alberto Marchetti-Spaccamela
    • 1
  • Sebastian Stiller
    • 3
  1. 1.Sapienza Università di RomaItaly
  2. 2.Università degli Studi dell’AquilaItaly
  3. 3.Technische Universität BerlinGermany

Personalised recommendations