Advertisement

Space-Time Tradeoffs for Proximity Searching in Doubling Spaces

  • Sunil Arya
  • David M. Mount
  • Antoine Vigneron
  • Jian Xia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5193)

Abstract

We consider approximate nearest neighbor searching in metric spaces of constant doubling dimension. More formally, we are given a set S of n points and an error bound ε> 0. The objective is to build a data structure so that given any query point q in the space, it is possible to efficiently determine a point of S whose distance from q is within a factor of (1 + ε) of the distance between q and its nearest neighbor in S. In this paper we obtain the following space-time tradeoffs. Given a parameter γ ∈ [2,1/ε], we show how to construct a data structure of space \(n \gamma^{O(\dim)} \log(1/\varepsilon)\) space that can answer queries in time \(O(\log(n\gamma)) + (1/(\varepsilon \gamma))^{O(\dim)}\). This is the first result that offers space-time tradeoffs for approximate nearest neighbor queries in doubling spaces. At one extreme it nearly matches the best result currently known for doubling spaces, and at the other extreme it results in a data structure that can answer queries in time O(log(n/ε)), which matches the best query times in Euclidean space. Our approach involves a novel generalization of the AVD data structure from Euclidean space to doubling space.

Keywords

Query Point Query Time Separation Property Doubling Dimension Neighbor Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arya, S., Malamatos, T.: Linear-size approximate Voronoi diagrams. In: Proc. 13th ACM-SIAM Sympos. Discrete Algorithms, pp. 147–155 (2002)Google Scholar
  2. 2.
    Arya, S., Malamatos, T., Mount, D.M.: Space-efficient approximate Voronoi diagrams. In: Proc. 34th Annu. ACM Sympos. Theory Comput., pp. 721–730 (2002)Google Scholar
  3. 3.
    Arya, S., Mount, D.M., Netanyahu, N., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. In: Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pp. 573–582 (1994)Google Scholar
  4. 4.
    Assouad, P.: Plongements lipschitziens dans ℝn. Bull. Soc. Math. France 111(4), 429–448 (1983)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 97–104 (2006)Google Scholar
  6. 6.
    Brin, S.: Near neighbor search in large metric spaces. In: Proc. 21st International Conf. on Very Large Data Bases, pp. 574–584 (1995)Google Scholar
  7. 7.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach. 42, 67–90 (1995)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Clarkson, K.L.: Nearest neighbor queries in metric spaces. Discrete Comput. Geom. 22(1), 63–93 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cole, R., Gottlieb, L.: Searching dynamic point sets in spaces with bounded doubling dimension. In: Proc. 38th Annu. ACM Sympos. Theory Comput., pp. 574–583 (2006)Google Scholar
  10. 10.
    Feustel, C.D., Shapiro, L.G.: The nearest neighbor problem in an abstract metric space. Pattern Recognition Letters 1(2), 125–128 (1982)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: Proc. 44th Annu. IEEE Sympos. Found. Comput. Sci., pp. 534–543 (2003)Google Scholar
  12. 12.
    Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci., pp. 94–103 (2001)Google Scholar
  13. 13.
    Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In: Proc. 34th Annu. ACM Sympos. Theory Comput., pp. 741–750 (2002)Google Scholar
  15. 15.
    Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity search. In: Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 798–807 (2004)Google Scholar
  16. 16.
    Krauthgamer, R., Lee, J.R.: The black-box complexity of nearest-neighbor search. Theoretical Computer Science 348(2-3), 262–276 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: Proc. 47th Annu. IEEE Sympos. Found. Comput. Sci., pp. 119–132 (2006)Google Scholar
  18. 18.
    Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pp. 311–321 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sunil Arya
    • 1
  • David M. Mount
    • 2
  • Antoine Vigneron
    • 3
  • Jian Xia
    • 1
  1. 1.Department of Computer Science and EngineeringThe Hong Kong University of Science and Technology, Clear Water Bay, KowloonHong Kong
  2. 2.Department of Computer Science and Institute for Advanced Computer StudiesUniversity of Maryland, College ParkMaryland
  3. 3.INRA, UR341 Mathématiques et Informatique AppliquéesJouy-en-JosasFrance

Personalised recommendations