Advertisement

On the Domain Attraction of Fuzzy Neural Networks

  • Tingwen Huang
  • Xiaofeng Liao
  • Hui Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5263)

Abstract

In this paper, we study qualitative properties of equilibrium points in a class of interval fuzzy neural networks and obtain an estimate on the domain of robust attraction of locally exponentially stable equilibrium points. Both the conditions and the estimate are formulated in terms of the parameter intervals, so they are verifiable easily.

Keywords

Attraction domain Fuzzy neural networks Stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao, J.: An Estimation of the Domain and Convergence Rate of Hopfield Associative Memory. J. Electron. 21, 488–491 (1999)Google Scholar
  2. 2.
    Cao, J.: An Estimation of the Domain of Attraction and Convergence Rate for Hopfield Continuous Feedback Neural Networks. Phys. Lett. A. 325, 370–374 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cao, J., Tao, Q.: An Estimation of the Domain of Attraction and Convergence Rate for Hopfield Continuous Feedback Neural Networks. J. Comput. Syst. Sci. 62, 528–534 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cao, J., Tao, Q.: An Estimation of the Domain of Attraction and Convergence Rate for Hopfield Associatiative Memory and an Application. J. Comput. Syst. Sci. 60, 179–186 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cao, J., Chen, T.: Globally Exponentially Robust Stability and Periodicity of Delayed Neural Networks. Chaos, Solitions and Fractals 22, 957–963 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cao, J., Wang, J.: Global Exponential Stability and Periodicity of Recurrent Neural Networks with Time Delays. IEEE Transactions on Circuits and Systems-Part I 52, 920–931 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Yang, X., Liao, X.F., Bai, S., Evans, D.: Robust Exponential Stability and Domains of Attraction in a Class of Interval Neural Networks. Chaos, Solitions and Fractals 26, 445–451 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Yang, X., Liao, X.F., Li, C., Evans, D.: New Estimate on the Domains of Attraction of Equilitrium Points in Continuous Hopfield Neural Networks. Phys. Lett. A. 351, 161–166 (2006)CrossRefGoogle Scholar
  9. 9.
    Yang, T., Yang, L.B., Wu, C.W., Chua, L.O.: Fuzzy Cellular Neural Networks: Theory. In: Proc. of IEEE International Workshop on Cellular Neural Networks and Applications, pp. 181–186 (1996)Google Scholar
  10. 10.
    Chen, A., Huang, L., Liu, Z., Cao, J.: Periodic Bidirectional Associative Memory Neural Networks with Distributed Delays. Journal of Mathematical Analysis and Applications 317, 80–102 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen, A., Huang, L., Cao, J.: Existence and Stability of Almost Periodic Solution for BAM Neural Networks with Delays. Applied Mathematics and Computation 137, 177–193 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chen, T., Amari, S.: Stability of Asymmetric Hopfield Networks. IEEE Trans. Neural Networks 12, 159–163 (2001)CrossRefGoogle Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1999)Google Scholar
  14. 14.
    Huang, T., Cao, J., Li, C.: Necessary and Sufficient Condition for the Absolute Exponential Stability for a Class of Neural Networks with Finite Delay. Phys. Lett. A. 352, 94–98 (2006)CrossRefGoogle Scholar
  15. 15.
    Huang, T.: Exponential Stability of Fuzzy Cellular Neural Networks with Unbounded Distributed Delay. Phys. Lett. A. 351, 48–52 (2006)CrossRefGoogle Scholar
  16. 16.
    Li, C., Liao, X., Huang, T.: Global Stability Analysis for Delayed Neural Networks via an Interval Matrix Approach. IET Control Theory Appl. 1, 743–748 (2007)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Liao, X., Wang, J., Cao, J.: Global and Robust Stability of Interval Hipfield Neural Networks with Time-varying Delays. Int. J. Neural Sys. 13, 171–182 (2003)CrossRefGoogle Scholar
  18. 18.
    Liao, X.F., Yu, J.B.: Robust Stability for Interval Hopfield Neural Networks with Time Delay. IEEE Trans. on Neural Networks 9, 1042–1045 (1998)CrossRefGoogle Scholar
  19. 19.
    Song, Q.K., Cao, J.: Global Robust Stability of Interval Neural Networks with Multiple Time-varying Delays. Mathematics and Computers in Simulation 74, 38–46 (2007)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Song, Q.K., Zhao, Z., Li, Y.: Global Exponential Stability of BAM Neural Networks with Distributed Delays and Reactiondiffusion Terms, vol. 335, pp. 213–225 (2005)Google Scholar
  21. 21.
    Wang, L., Lin, Y.: Global Robust Stability for Shunting Inhibitory CNNs with Delays. Int. J. Neural Syst. 14, 229–235 (2004)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Yang, T., Yang, L.B., Wu, C.W., Chua, L.O.: Fuzzy Cellular Neural Networks: Applications. In: Proc. of IEEE International Workshop on Cellular Neural Networks and Applications, pp. 225–230 (1996)Google Scholar
  23. 23.
    Yang, T., Yang, L.B.: The Global Stability of Fuzzy Cellular Neural Network. Circuits and Systems I: Fundamental Theory and Applications 43, 880–883 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tingwen Huang
    • 1
  • Xiaofeng Liao
    • 2
  • Hui Huang
    • 3
  1. 1.Texas A&M University at Qatar, DohaQatar
  2. 2.Department of Computer Science and EngineeringChongqing UniversityChongqingP.R. China
  3. 3.Fundamental Study DepartmentChongqing Logistics and Engineering College 

Personalised recommendations