Advertisement

Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

  • G. Gompper
  • T. Ihle
  • D. M. Kroll
  • R. G. Winkler
Part of the Advances in Polymer Science book series (POLYMER, volume 221)

In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of vis-coelastic fluids.

Keywords

Binary fluid mixtures Colloids Complex fluids Hydrodynamics Mesoscale simulation techniques Microemulsions Polymers Red blood cells Vesicles Viscoelastic fluids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).Google Scholar
  2. 2.
    P. Espanol, Phys. Rev. E 52, 1734 (1995).Google Scholar
  3. 3.
    P. Espanol and P. B. Warren, Europhys. Lett. 30, 191 (1995).Google Scholar
  4. 4.
    G. R. McNamara and G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988).Google Scholar
  5. 5.
    X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993).Google Scholar
  6. 6.
    X. He and L.-S. Luo, Phys. Rev. E 56, 6811 (1997).Google Scholar
  7. 7.
    G. A. Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows(Oxford University Press, Oxford, 1994).Google Scholar
  8. 8.
    F. J. Alexander and A. L. Garcia, Comp. in Phys. 11, 588 (1997).Google Scholar
  9. 9.
    A. L. Garcia,Numerical Methods for Physics(Prentice Hall, 2000).Google Scholar
  10. 10.
    U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986).Google Scholar
  11. 11.
    R. Adhikari, K. Stratford, M. E. Cates, and A. J. Wagner, Europhys. Lett. 71, 473 (2005). Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA e-mail: thomas.ihle@ndsu.edu; daniel.kroll@ndsu.eduGoogle Scholar
  12. 12.
    J. K. G. Dhont,An Introduction to Dynamics of Colloids(Elsevier, Amsterdam, 1996).Google Scholar
  13. 13.
    R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford, 1999).Google Scholar
  14. 14.
    M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper, Europhys. Lett. 68, 106 (2004).Google Scholar
  15. 15.
    M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper, Phys. Rev. E 72, 016701 (2005).Google Scholar
  16. 16.
    M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann, Phys. Rev. E 72, 011408 (2005).Google Scholar
  17. 17.
    J. T. Padding and A. A. Louis, Phys. Rev. E 74, 031402 (2006).Google Scholar
  18. 18.
    A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).Google Scholar
  19. 19.
    A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).Google Scholar
  20. 20.
    T. Ihle and D. M. Kroll, Phys. Rev. E 67, 066705 (2003).Google Scholar
  21. 21.
    T. Ihle and D. M. Kroll, Phys. Rev. E 63, 020201(R) (2001).Google Scholar
  22. 22.
    A. Mohan and P. S. Doyle, Macromolecules 40, 4301 (2007).Google Scholar
  23. 23.
    J. M. Kim and P. S. Doyle, J. Chem. Phys. 125, 074906 (2006).Google Scholar
  24. 24.
    N. Kikuchi, A. Gent, and J. M. Yeomans, Eur. Phys. J. E 9, 63 (2002).Google Scholar
  25. 25.
    M. Ripoll, R. G. Winkler, and G. Gompper, Eur. Phys. J. E 23, 349 (2007).Google Scholar
  26. 26.
    N. Kikuchi, C. M. Pooley, J. F. Ryder, and J. M. Yeomans, J. Chem. Phys. 119, 6388 (2003).Google Scholar
  27. 27.
    T. Ihle and D. M. Kroll, Phys. Rev. E 67, 066706 (2003).Google Scholar
  28. 28.
    T. Ihle, E. Tüzel, and D. M. Kroll, Phys. Rev. E 72, 046707 (2005).Google Scholar
  29. 29.
    J. A. Backer, C. P. Lowe, H. C. J. Hoefsloot, and P. D. Iedema, J. Chem. Phys. 122, 1 (2005).Google Scholar
  30. 30.
    R. Kapral, Adv. Chem. Phys., to appear (2008).Google Scholar
  31. 31.
    E. Allahyarov and G. Gompper, Phys. Rev. E 66, 036702 (2002).Google Scholar
  32. 32.
    N. Noguchi, N. Kikuchi, and G. Gompper, Europhys. Lett. 78, 10005 (2007).Google Scholar
  33. 33.
    T. Ihle, E. Tüzel, and D. M. Kroll, Europhys. Lett. 73, 664 (2006).Google Scholar
  34. 34.
    E. Tüzel, T. Ihle, and D. M. Kroll, Math. Comput. Simulat. 72, 232 (2006).Google Scholar
  35. 35.
    C. M. Pooley and J. M. Yeomans, J. Phys. Chem. B 109, 6505 (2005).Google Scholar
  36. 36.
    A. Lamura, G. Gompper, T. Ihle, and D. M. Kroll, Europhys. Lett. 56, 319 (2001).Google Scholar
  37. 37.
    H. Noguchi and G. Gompper, Phys. Rev. Lett. 93, 258102 (2004).Google Scholar
  38. 38.
    I. O. Götze, H. Noguchi, and G. Gompper, Phys. Rev. E 76, 046705 (2007).Google Scholar
  39. 39.
    J. F. Ryder,Mesoscopic Simulations of Complex Fluids, Ph.D. thesis, University of Oxford (2005).Google Scholar
  40. 40.
    I. O. Götze, private communication (2007).Google Scholar
  41. 41.
    J. Erpenbeck, Phys. Rev. Lett. 52, 1333 (1984).Google Scholar
  42. 42.
    M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids(Clarendon Press, Oxford, 1987).Google Scholar
  43. 43.
    J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950).Google Scholar
  44. 44.
    H. T. Davis,Statistical Mechanics of Phases, Interfaces, and Thin Films(VCH Publishers, Inc., 1996).Google Scholar
  45. 45.
    E. Tüzel, G. Pan, T. Ihle, and D. M. Kroll, Europhys. Lett. 80, 40010 (2007).Google Scholar
  46. 46.
    F. Reif,Fundamentals of Statistical and Thermal Physics(Mc-Graw Hill, 1965).Google Scholar
  47. 47.
    R. Zwanzig,Lectures in Theoretical Physics, vol. 3 (Wiley, New York, 1961).Google Scholar
  48. 48.
    H. Mori, Prog. Theor. Phys. 33, 423 (1965).Google Scholar
  49. 49.
    H. Mori, Prog. Theor. Phys. 34, 399 (1965).Google Scholar
  50. 50.
    J. W. Dufty and M. H. Ernst, J. Phys. Chem. 93, 7015 (1989).Google Scholar
  51. 51.
    T. Ihle, E. Tu¨zel, and D. M. Kroll, Phys. Rev. E 70, 035701(R) (2004).Google Scholar
  52. 52.
    C. M. Pooley,Mesoscopic Modelling Techniques for Complex Fluids, Ph.D. thesis, University of Oxford (2003).Google Scholar
  53. 53.
    E. Tüzel, M. Strauss, T. Ihle, and D. M. Kroll, Phys. Rev. E 68, 036701 (2003).Google Scholar
  54. 54.
    E. Tuüzel,Particle-based mesoscale modeling of flow and transport in complex fluids, Ph.D. thesis, University of Minnesota (2006).Google Scholar
  55. 55.
    T. Ihle and E. Tu¨zel, Prog. Comp. Fluid Dynamics 8, 123 (2008).Google Scholar
  56. 56.
    B. J. Berne and R. Pecora,Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics(Wiley, New York, 1976).Google Scholar
  57. 57.
    E. Tüzel, T. Ihle, and D. M. Kroll, Phys. Rev. E 74, 056702 (2006).Google Scholar
  58. 58.
    H. Noguchi and G. Gompper, Europhys. Lett. 79, 36002 (2007).Google Scholar
  59. 59.
    H. Noguchi and G. Gompper, Phys. Rev. E 78, 016706 (2008).Google Scholar
  60. 60.
    T. Ihle, J. Phys.: Condens. Matter 20., 235224 (2008).Google Scholar
  61. 61.
    H. B. Callen,Thermodynamics(Wiley, New York, 1960).Google Scholar
  62. 62.
    Y. Hashimoto, Y. Chen, and H. Ohashi, Comp. Phys. Commun. 129, 56 (2000).Google Scholar
  63. 63.
    Y. Inoue, Y. Chen, and H. Ohashi, Comp. Phys. Commun. 201, 191 (2004).Google Scholar
  64. 64.
    Y. Inoue, S. Takagi, and Y. Matsumoto, Comp. Fluids 35, 971 (2006).Google Scholar
  65. 65.
    T. Sakai, Y. Chen, and H. Ohashi, Comp. Phys. Commun. 129, 75 (2000).Google Scholar
  66. 66.
    T. Sakai, Y. Chen, and H. Ohashi, Phys. Rev. E 65, 031503 (2002).Google Scholar
  67. 67.
    T. Sakai, Y. Chen, and H. Ohashi, Colloids Surf., A 201, 297 (2002).Google Scholar
  68. 68.
    A. Malevanets and J. M. Yeomans, Europhys. Lett.52, 231 (2000).Google Scholar
  69. 69.
    J. Elgeti and G. Gompper, inNIC Symposium 2008, edited by G. Münster, D. Wolf, and M. Kremer (Neumann Institute for Computing, Jülich, 2008), vol. 39 ofNIC series, pp. 53– 61.Google Scholar
  70. 70.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).Google Scholar
  71. 71.
    E. Falck, O. Punkkinen, I. Vattulainen, and T. Ala-Nissila, Phys. Rev. E 68, 050102(R) (2003).Google Scholar
  72. 72.
    R. G. Winkler, K. Mussawisade, M. Ripoll, and G. Gompper, J. Phys.: Condens. Matter 16, S3941 (2004).Google Scholar
  73. 73.
    K. Mussawisade, M. Ripoll, R. G. Winkler, and G. Gompper, J. Chem. Phys. 123, 144905 (2005).Google Scholar
  74. 74.
    M. A. Webster and J. M. Yeomans, J. Chem. Phys. 122, 164903 (2005).Google Scholar
  75. 75.
    E. Falck, J. M. Lahtinen, I. Vattulainen, and T. Ala-Nissila, Eur. Phys. J. E 13, 267 (2004).Google Scholar
  76. 76.
    M. Hecht, J. Harting, and H. J. Herrmann, Phys. Rev. E 75, 051404 (2007).Google Scholar
  77. 77.
    S. H. Lee and R. Kapral, J. Chem. Phys. 121, 11163 (2004).Google Scholar
  78. 78.
    Y. Inoue, Y. Chen, and H. Ohashi, J. Stat. Phys. 107, 85 (2002).Google Scholar
  79. 79.
    J. T. Padding, A. Wysocki, H. Löwen, and A. A. Louis, J. Phys.: Condens. Matter 17, S3393 (2005).Google Scholar
  80. 80.
    S. H. Lee and R. Kapral, Physica A 298, 56 (2001).Google Scholar
  81. 81.
    A. Lamura and G. Gompper, Eur. Phys. J. E 9, 477 (2002).Google Scholar
  82. 82.
    J. T. Padding, private communication (2007).Google Scholar
  83. 83.
    C. Pierleoni and J.-P. Ryckaert, Phys. Rev. Lett. 61, 2992 (1991).Google Scholar
  84. 84.
    B. Duünweg and K. Kremer, Phys. Rev. Lett. 66, 2996 (1991).Google Scholar
  85. 85.
    C. Pierleoni and J.-P. Ryckaert, J. Chem. Phys. 96, 8539 (1992).Google Scholar
  86. 86.
    B. Dünweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).Google Scholar
  87. 87.
    C. Aust, M. Kröger, and S. Hess, Macromolecules 32, 5660 (1999).Google Scholar
  88. 88.
    E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot, Phys. Rev. E 55, 3124 (1997).Google Scholar
  89. 89.
    P. Ahlrichs and B. Dünweg, Int. J. Mod. Phys. C 9, 1429 (1998).Google Scholar
  90. 90.
    P. Ahlrichs, R. Everaers, and B. Dünweg, Phys. Rev. E 64, 040501 (2001).Google Scholar
  91. 91.
    N. A. Spenley, Europhys. Lett. 49, 534 (2000).Google Scholar
  92. 92.
    C. P. Lowe, A. F. Bakker, and M. W. Dreischor, Europhys. Lett. 67, 397 (2004).Google Scholar
  93. 93.
    G. K. Batchelor, J. Fluid Mech. 52, 245 (1972).Google Scholar
  94. 94.
    A. J. C. Ladd, Phys. Fluids 9, 481 (1997).Google Scholar
  95. 95.
    K. Höfler and S. Schwarzer, Phys. Rev. E 61, 7146 (2000).Google Scholar
  96. 96.
    J. T. Padding and A. A. Louis, Phys. Rev. Lett. 93, 220601 (2004).Google Scholar
  97. 97.
    H. Hayakawa and K. Ichiki, Phys. Rev. E 51, R3815 (1995).Google Scholar
  98. 98.
    H. Hayakawa and K. Ichiki, Phys. Fluids 9, 481 (1997).Google Scholar
  99. 99.
    M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. Lett. 25, 1254 (1970).Google Scholar
  100. 100.
    M. Hecht, J. Harting, M. Bier, J. Reinshagen, and H. J. Herrmann, Phys. Rev. E 74, 021403 (2006).Google Scholar
  101. 101.
    B. V. Derjaguin and D. P. Landau, Acta Phys. Chim. 14, 633 (1941).Google Scholar
  102. 102.
    W. B. Russel, D. A. Saville, and W. Schowalter, Colloidal dispersions (Cambridge University Press, Cambridge, 1995).Google Scholar
  103. 103.
    S. H. Lee and R. Kapral, J. Chem. Phys. 122, 214916 (2005).Google Scholar
  104. 104.
    J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).Google Scholar
  105. 105.
    J. P. Erpenbeck and J. G. Kirkwood, J. Chem. Phys. 29, 909 (1958).Google Scholar
  106. 106.
    E. P. Petrov, T. Ohrt, R. G. Winkler, and P. Schwille, Phys. Rev. Lett. 97, 258101 (2006).Google Scholar
  107. 107.
    B. H. Zimm, J. Chem. Phys. 24, 269 (1956).Google Scholar
  108. 108.
    S. H. Lee and R. Kapral, J. Chem. Phys. 124, 214901 (2006).Google Scholar
  109. 109.
    M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4, 2055 (1971).Google Scholar
  110. 110.
    J.-P. Hansen and I. R. McDonald,Theory of Simple Liquids(Academic Press, London, 1986).Google Scholar
  111. 111.
    B. Liu and B. Dünweg, J. Chem. Phys. 118, 8061 (2003).Google Scholar
  112. 112.
    P. Ahlrichs and B. Dünweg, J. Chem. Phys. 111, 8225 (1999).Google Scholar
  113. 113.
    M. Fixmann, J. Chem. Phys. 78, 1594 (1983).Google Scholar
  114. 114.
    M. Schmidt and W. Burchard, Macromolecules 14, 210 (1981).Google Scholar
  115. 115.
    W. H. Stockmayer and B. Hammouda, Pure & Appl. Chem. 56, 1373 (1984).Google Scholar
  116. 116.
    P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).Google Scholar
  117. 117.
    P. G. de Gennes,Scaling Concepts in Polymer Physics(Cornell University, Ithaca, 1979).Google Scholar
  118. 118.
    J. des Cloizeaux and G. Jannink, Polymer Solutions: Their Modelling and Structure (Clarendon Press, Oxford, 1990).Google Scholar
  119. 119.
    D. Ceperly, M. H. Kalos, and J. L. Lebowitz, Macromolecules 14, 1472 (1981).Google Scholar
  120. 120.
    K. Kremer and K. Binder, Comput. Phys. Rep. 7, 261 (1988).Google Scholar
  121. 121.
    R. G. Winkler, L. Harnau, and P. Reineker, Macromol. Theory Simul. 6, 1007 (1997).Google Scholar
  122. 122.
    R. Chang and A. Yethiraj, J. Chem. Phys. 114, 7688 (2001).Google Scholar
  123. 123.
    N. Kikuchi, A. Gent, and J. M. Yeomans, Eur. Phys. J. E 9, 63 (2002).Google Scholar
  124. 124.
    N. Kikuchi, J. F. Ryder, C. M. Pooley, and J. M. Yeomans, Phys. Rev. E 71, 061804 (2005).Google Scholar
  125. 125.
    I. Ali and J. M. Yeomans, J. Chem. Phys. 123, 234903 (2005).Google Scholar
  126. 126.
    I. Ali and J. M. Yeomans, J. Chem. Phys. 121, 8635 (2004).Google Scholar
  127. 127.
    I. Ali, D. Marenduzzo, and J. F. D. Yeomans, Phys. Rev. Lett. 96, 208102 (2006).Google Scholar
  128. 128.
    N. Watari, M. Makino, N. Kikuchi, R. G. Larson, and M. Doi, J. Chem. Phys. 126, 09490 (2007).Google Scholar
  129. 129.
    F. Brochard-Wyart, Europhys. Lett. 23, 105 (1993).Google Scholar
  130. 130.
    F. Brochard-Wyart, H. Hervet, and P. Pincus, Europhys. Lett. 26, 511 (1994).Google Scholar
  131. 131.
    F. Brochard-Wyart, Europhys. Lett. 30, 210 (1995).Google Scholar
  132. 132.
    L. Cannavacciuolo, R. G. Winkler, and G. Gompper, EPL 83, 34007 (2008).Google Scholar
  133. 133.
    U. S. Agarwal, A. Dutta, and R. A. Mashelkar, Chem. Eng. Sci. 49, 1693 (1994).Google Scholar
  134. 134.
    R. M. Jendrejack, D. C. Schwartz, J. J. de Pablo, and M. D. Graham, J. Chem. Phys. 120, 2513 (2004).Google Scholar
  135. 135.
    O. B. Usta, J. E. Butler, and A. J. C. Ladd, Phys. Fluids 18, 031703 (2006).Google Scholar
  136. 136.
    R. Khare, M. D. Graham, and J. J. de Pablo, Phys. Rev. Lett. 96, 224505 (2006).Google Scholar
  137. 137.
    D. Stein, F. H. J. van der Heyden, W. J. A. Koopmans, and C. Dekker, Proc. Natl. Acad. Sci. USA 103, 15853 (2006).Google Scholar
  138. 138.
    O. B. Usta, J. E. Butler, and A. J. C. Ladd, Phys. Rev. Lett. 98, 098301 (2007).Google Scholar
  139. 139.
    G. S. Grest, K. Kremer, and T. A. Witten, Macromolecules 20, 1376 (1987).Google Scholar
  140. 140.
    C. N. Likos, Phys. Rep. 348, 267 (2001).Google Scholar
  141. 141.
    D. Vlassopoulos, G. Fytas, T. Pakula, and J. Roovers, J. Phys.: Condens. Matter 13, R855 (2001).Google Scholar
  142. 142.
    M. Ripoll, R. G. Winkler, and G. Gompper, Phys. Rev. Lett. 96, 188302 (2006).Google Scholar
  143. 143.
    G. S. Grest, K. Kremer, S. T. Milner, and T. A. Witten, Macromolecules 22, 1904 (1989).Google Scholar
  144. 144.
    D. R. Mikulencak and J. F. Morris, J. Fluid Mech. 520, 215 (2004).Google Scholar
  145. 145.
    A. Link and J. Springer, Macromolecules 26, 464 (1993).Google Scholar
  146. 146.
    R. E. Teixeira, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, Macromolecules 38, 581 (2005).Google Scholar
  147. 147.
    R. G. Winkler, Phys. Rev. Lett. 97, 128301 (2006).Google Scholar
  148. 148.
    P. G. de Gennes, J. Chem. Phys. 60, 5030 (1974).Google Scholar
  149. 149.
    P. LeDuc, C. Haber, G. Bao, and D. Wirtz, Nature (London) 399, 564 (1999).Google Scholar
  150. 150.
    D. E. Smith, H. P. Babcock, and S. Chu, Science 283, 1724 (1999).Google Scholar
  151. 151.
    C. Aust, M. Kröger, and S. Hess, Macromolecules 35, 8621 (2002).Google Scholar
  152. 152.
    Y. Navot, Phys. Fluids 10, 1819 (1998).Google Scholar
  153. 153.
    R. Goetz and R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).Google Scholar
  154. 154.
    R. Goetz, G. Gompper, and R. Lipowsky, Phys. Rev. Lett.82, 221 (1999).Google Scholar
  155. 155.
    W. K. den Otter and W. J. Briels, J. Chem. Phys. 118, 4712 (2003).Google Scholar
  156. 156.
    J. C. Shillcock and R. Lipowsky, J. Chem. Phys. 117, 5048 (2002).Google Scholar
  157. 157.
    L. Rekvig, B. Hafskjold, and B. Smit, Phys. Rev. Lett. 92, 116101 (2004).Google Scholar
  158. 158.
    M. Laradji and P. B. S. Kumar, Phys. Rev. Lett. 93, 198105 (2004).Google Scholar
  159. 159.
    V. Ortiz, S. O. Nielsen, D. E. Discher, M. L. Klein, R. Lipowsky, and J. Shillcock, J. Phys Chem. B 109, 17708 (2005).Google Scholar
  160. 160.
    M. Venturoli, M. M. Sperotto, M. Kranenburg, and B. Smit, Phys. Rep. 437, 1 (2006).Google Scholar
  161. 161.
    H. Noguchi and M. Takasu, J. Chem. Phys. 115, 9547 (2001).Google Scholar
  162. 162.
    H. Noguchi, J. Chem. Phys. 117, 8130 (2002).Google Scholar
  163. 163.
    O. Farago, J. Chem. Phys. 119, 596 (2003).Google Scholar
  164. 164.
    I. R. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72, 011506 (2005).Google Scholar
  165. 165.
    W. Helfrich and Z. Naturforsch. 28c, 693 (1973).Google Scholar
  166. 166.
    G. Gompper and D. M. Kroll, J. Phys.: Condens. Matter9, 8795 (1997).Google Scholar
  167. 167.
    G. Gompper and D. M. Kroll, inStatistical Mechanics of Membranes and Surfaces, edited by D. R. Nelson, T. Piran, and S. Weinberg (World Scientific, Singapore, 2004), pp. 359–426, 2nd ed.Google Scholar
  168. 168.
    J. M. Drouffe, A. C. Maggs, and S. Leibler, Science254, 1353 (1991).Google Scholar
  169. 169.
    H. Noguchi and G. Gompper, Phys. Rev. E73, 021903 (2006).Google Scholar
  170. 170.
    J.-S. Ho and A. Baumgärtner, Europhys. Lett.12, 295 (1990).Google Scholar
  171. 171.
    D. M. Kroll and G. Gompper, Science255, 968 (1992).Google Scholar
  172. 172.
    D. H. Boal and M. Rao, Phys. Rev. A45, R6947 (1992).Google Scholar
  173. 173.
    G. Gompper and D. M. Kroll, J. Phys. I France6, 1305 (1996).Google Scholar
  174. 174.
    C. Itzykson, inProceedings of the GIFT Seminar, Jaca 85, edited by J. Abad, M. Asorey, an A. Cruz (World Scientific, Singapore, 1986), pp. 130–188.Google Scholar
  175. 175.
    G. Gompper, inSoft Matter — Complex Materials on Mesoscopic Scales, edited by J. K. G Dhont, G. Gompper, and D. Richter (Forschungszentrum Jülich, Jülich, 2002), vol. 10 ofMatter and Materials.Google Scholar
  176. 176.
    U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A44, 1182 (1991).Google Scholar
  177. 177.
    G. Gompper and D. M. Kroll, Phys. Rev. Lett.73, 2139 (1994).Google Scholar
  178. 178.
    G. Gompper and D. M. Kroll, Phys. Rev. E51, 514 (1995).Google Scholar
  179. 179.
    H.-G. Döbereiner, G. Gompper, C. Haluska, D. M. Kroll, P. G. Petrov, and K. A. Riske, Phys. Rev. Lett.91, 048301 (2003).Google Scholar
  180. 180.
    H. Noguchi and G. Gompper, Phys. Rev. E72, 011901 (2005).Google Scholar
  181. 181.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P.Walter, Molecular Biology of the Cell(Garland, New York, 2007), 5th ed.Google Scholar
  182. 182.
    N. Mohandas and E. Evans, Annu. Rev. Biophys. Biomol. Struct.23, 787 (1994).Google Scholar
  183. 183.
    L. Scheffer, A. Bitler, E. Ben-Jacob, and F. Korenstein, Eur. Biophys. J.30, 83 (2001).Google Scholar
  184. 184.
    G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, Biophys. J.81, 43 (2001).Google Scholar
  185. 185.
    D. E. Discher, D. H. Boal, and S. K. Boey, Biophys. J.75, 1584 (1998).Google Scholar
  186. 186.
    G. Lim, M. Wortis, and R. Mukhopadhyay, Proc. Natl. Acad. Sci. USA99, 16766 (2002).Google Scholar
  187. 187.
    H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci. USA102, 14159 (2005).Google Scholar
  188. 188.
    H. Noguchi and G. Gompper, J. Chem. Phys.125, 164908 (2006).Google Scholar
  189. 189.
    M. M. Dupin, I. Halliday, C. M. Care, L. Alboul, and L. L. Munn, Phys. Rev. E75, 066707 (2007).Google Scholar
  190. 190.
    K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, and J. Mellema, Phys. Rev. E56, 7132 (1997).Google Scholar
  191. 191.
    V. Kantsler and V. Steinberg, Phys. Rev. Lett.95, 258101 (2005).Google Scholar
  192. 192.
    V. Kantsler and V. Steinberg, Phys. Rev. Lett.96, 036001 (2006).Google Scholar
  193. 193.
    M. A. Mader, V. Vitkova, M. Abkarian, A. Viallat, and T. Podgorski, Eur. Phys. J. E19, 389 (2006).Google Scholar
  194. 194.
    S. R. Keller and R. Skalak, J. Fluid Mech.120, 27 (1982).Google Scholar
  195. 195.
    T. W. Secomb and R. Skalak, Q. J. Mech. Appl. Math.35, 233 (1982).Google Scholar
  196. 196.
    T. W. Secomb, T. M. Fischer, and R. Skalak, Biorheology20, 283 (1983).Google Scholar
  197. 197.
    R. Tran-Son-Tay, S. P. Sutera, and P. R. Rao, Biophys. J.46, 65 (1984).Google Scholar
  198. 198.
    U. Seifert, Eur. Phys. J. B8, 405 (1999).Google Scholar
  199. 199.
    C. Misbah, Phys. Rev. Lett.96, 028104 (2006).Google Scholar
  200. 200.
    G. Danker, T. Biben, T. Podgorski, C. Verdier, and C. Misbah, Phys. Rev. E76, 041905 (2007).Google Scholar
  201. 201.
    V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, Phys. Rev. Lett.99, 218101 (2007).Google Scholar
  202. 202.
    M. Kraus, W. Wintz, U. Seifert, and R. Lipowsky, Phys. Rev. Lett.77, 3685 (1996).Google Scholar
  203. 203.
    J. Beaucourt, F. Rioual, T. Séon, T. Biben, and C. Misbah, Phys. Rev. E69, 011906 (2004).Google Scholar
  204. 204.
    T. Biben, K. Kassner, and C. Misbah, Phys. Rev. E72, 041921 (2005).Google Scholar
  205. 205.
    H. Noguchi and G. Gompper, Phys. Rev. Lett.98, 128103 (2007).Google Scholar
  206. 206.
    F. Brochard and J. F. Lennon, J. Phys. France36, 1035 (1975).Google Scholar
  207. 207.
    J. Rudnick and G. Gaspari, J. Phys. A19, L191 (1986).Google Scholar
  208. 208.
    G. B. Nash and H. J. Meiselman, Biophys. J.43, 63 (1983).Google Scholar
  209. 209.
    K. Tsukada, E. Sekizuka, C. Oshio, and H. Minamitani, Microvasc. Res.61, 231 (2001).Google Scholar
  210. 210.
    B. M. Discher, Y.-Y. Won, D. S. Ege, J. C.-M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, Science284, 1143 (1999).Google Scholar
  211. 211.
    R. Dimova, U. Seifert, B. Pouligny, S. Förster, and H.-G. Döbereiner, Eur. Phys. J. E 7, 241 (2002).Google Scholar
  212. 212.
    H. Noguchi and G. Gompper, J. Phys.: Condens. Matter17, S3439 (2005).Google Scholar
  213. 213.
    R. Finken, A. Lamura, U. Seifert, and G. Gompper, Eur. Phys. J. E25, 309 (2008).Google Scholar
  214. 214.
    T. W. Secomb, R. Skalak, N. ö zkaya, and J. F. Gross, J. Fluid Mech.163, 405 (1986).Google Scholar
  215. 215.
    R. Skalak, Biorheology27, 277 (1990).Google Scholar
  216. 216.
    R. Bruinsma, Physica A234, 249 (1996).Google Scholar
  217. 217.
    C. Quéguiner and D. Barthés-Biesel, J. Fluid Mech.348, 349 (1997).Google Scholar
  218. 218.
    C. Pozrikidis, Phys. Fluids17, 031503 (2005).Google Scholar
  219. 219.
    C. Pozrikidis, Ann. Biomed. Eng.33, 165 (2005).Google Scholar
  220. 220.
    R. Skalak, Science164, 717 (1969).Google Scholar
  221. 221.
    S. Chien, Ann. Rev. Physiol.49, 177 (1987).Google Scholar
  222. 222.
    Y. Suzuki, N. Tateishi, M. Soutani, and N. Maeda, Microcirc.3, 49 (1996).Google Scholar
  223. 223.
    K. Boryczko, W. Dzwinel, and D. A. Yuen, J. Mol. Modeling9, 16 (2003).Google Scholar
  224. 224.
    W. Dzwinel, K. Boryczko, and D. A. Yuen, J. Colloid Int. Sci.258, 163 (2003).Google Scholar
  225. 225.
    C. D. Eggleton and A. S. Popel, Phys. Fluids10, 1834 (1998).Google Scholar
  226. 226.
    Y. Liu and W. K. Liu, J. Comput. Phys.220, 139 (2006).Google Scholar
  227. 227.
    H. Tanaka, J. Phys.: Condens. Matter12, R207 (2000).Google Scholar
  228. 228.
    J. Vermant and M. J. Solomon, J. Phys.: Condens. Matter17, R187 (2005).Google Scholar
  229. 229.
    Y.-G. Tao, I. O. Götze, and G. Gompper, J. Chem. Phys.128, 144902 (2008).Google Scholar
  230. 230.
    R. B. Bird, C. F. Curtis, R. C. Armstrong, and O. Hassager,Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory (Wiley, New York, 1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Theoretical Soft Matter and BiophysicsInstitut fur Festkörperforschung, Forschungszentrum JülichJülichGermany
  2. 2.Department of PhysicsNorth Dakota State UniversityFargoUSA

Personalised recommendations