Advertisement

The Influence of Mutation on Protein-Ligand Docking Optimization: A Locality Analysis

  • Jorge Tavares
  • Alexandru-Adrian Tantar
  • Nouredine Melab
  • El-Ghazali Talbi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

Evolutionary approaches to protein-ligand docking typically use a real-value encoding and mutation operators based on Gaussian and Cauchy distributions. The choice of mutation is important for an efficient algorithm for this problem. We investigate the effect of mutation operators by locality analysis. High locality means that small variations in the genotype imply small variations in the phenotype. Results show that Gaussian-based operators have stronger locality than Cauchy-based ones, especially if an annealing scheme is used to control the variance.

Keywords

Evolutionary Algorithm Mutation Operator Mutation Step Cauchy Distribution Structural Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review 39, 407–460 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Morris, G.M., Olson, A.J., Goodsell, D.S.: Protein-ligand docking. In: Clark, D.E. (ed.) Evolutionary Algorithms in Molecular Design, pp. 31–48. Wiley-VCH (2000)Google Scholar
  3. 3.
    Thomsen, R.: Protein-ligand docking with evolutionary algorithms. In: Fogel, G.B., Corne, D.W., Pan, Y. (eds.) Computational Intelligence in Bioinformatics, pp. 169–195. Wiley-IEEE Press, Chichester (2008)Google Scholar
  4. 4.
    Korb, O., Stützle, T., Exner, T.: An ant colony optimization approach to flexible protein-ligand docking. Swarm Intelligence 1, 115–134 (2007)CrossRefGoogle Scholar
  5. 5.
    Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72, 57–73 (2003)CrossRefGoogle Scholar
  6. 6.
    Sendhoff, B., Kreutz, M., Seelen, W.V.: A condition for the genotype-phenotype mapping: Casualty. In: 7th Int. Conf. on Genetic Algorithms, pp. 73–80 (1997)Google Scholar
  7. 7.
    Rothlauf, F.: On the locality of representations. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003), pp. 1608–1609 (2003)Google Scholar
  8. 8.
    Raidl, G.R., Gottlieb, J.: Empirical analysis of locality heriability and heuristic bias in evolutionary algorithms: A case study for the multidimensional knapsack problem. Evolutionary Computation Journal 13, 441–475 (2005)CrossRefGoogle Scholar
  9. 9.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. Journal of Computational Chemistry 19, 1639–1662 (1998)CrossRefGoogle Scholar
  10. 10.
    Pereira, F.B., Marques, J., Leitão, T., Tavares, J.: Analysis of locality in hybrid evolutionary cluster optimization. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, Canada, pp. 8049–8056. IEEE Press, Los Alamitos (2006)Google Scholar
  11. 11.
    Dixon, J.S.: Flexible docking of ligands to receptor sites using genetic algorithms. In: Proc. of the 9th European Symposium on Structure-Activity Relationships, Leiden, The Netherlands, pp. 412–413. ESCOM Science Publishers (1993)Google Scholar
  12. 12.
    Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, C.: Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. British Journal of Pharmacology 153, 1–20 (2007)Google Scholar
  13. 13.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the VI International Conference on Genetics, vol. 1, pp. 356–366 (1932)Google Scholar
  14. 14.
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University of New Mexico, Albuquerque, New Mexico (1995)Google Scholar
  15. 15.
    Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63, 325–336 (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jorge Tavares
    • 1
  • Alexandru-Adrian Tantar
    • 1
  • Nouredine Melab
    • 1
  • El-Ghazali Talbi
    • 1
  1. 1.INRIA Lille - Nord Europe Research Centre, Parc Scientifique de la Haute BorneVilleneuve d’AscqFrance

Personalised recommendations