Formally Testing Liveness by Means of Compression Rates

  • César Andrés
  • Ismael Rodríguez
  • Fernando Rubio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

We present a formal method to determine whether there exist living creatures in a given computational environment. Our proposal is based on studying the evolution of the entropy of the studied system. In particular, we check whether there exist entities decreasing the entropy in some parts, while increasing it in the rest of the world, which fits into the well-known maximum entropy production principle. The entropy of a computational environment is measured in terms of its compression rate with respect to some compression strategy. Some life-related notions such as biodiversity are quantified as well. These ideas are presented by means of formal definitions. A toy example where a simple living structure is identified in a video stream is presented, and some results are reported.

Keywords

Artificial Life Maximum Entropy Principle Compression Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays. Academic Press, London (1982)MATHGoogle Scholar
  2. 2.
    Bruers, S.: A discussion on maximum entropy production and information theory. Journal of Physics A: Mathematical and Theoretical 40(27), 7441–7450 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. Journal of Physics A: Mathematical and General 36(3), 631–641 (2003)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Huffman, D.A.: A method for the construction of minimum redundancy codes. Proceedings of the Institute of Radio Engineers 40(9), 1098–1101 (1952)Google Scholar
  5. 5.
    Kim, K.-J., Cho, S.-B.: A comprehensive overview of the applications of artificial life. Artificial Life 12(1), 153–182 (2006)CrossRefGoogle Scholar
  6. 6.
    Kok, C.W.: Fast algorithms for computing discrete cosine transform. IEEE Transactions on Signal Processing 45, 757–760 (1997)CrossRefGoogle Scholar
  7. 7.
    Langton, C.: Studying artificial life with cellular automata. Physica D 22, 120–149 (1986)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Langton, C.: Artificial Life: An Overview. MIT Press, Cambridge (1995)Google Scholar
  9. 9.
    Prigogine, I., Stengers, I.: Order Out of Chaos. Bantam Books (1984)Google Scholar
  10. 10.
    Rafiei, D., Mendelzon, A.: Efficient retrieval of similar time sequences using DFT. In: 5th International Conference on Foundations of Data Organization and Algorithms (FODO 1998) (November 1998)Google Scholar
  11. 11.
    Schneider, E.D., Kay, J.J.: Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling 19(6-8), 25–48 (1994)CrossRefGoogle Scholar
  12. 12.
    Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Journal 27, 379–423 (1948)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Office of Technology Assessment U.S. Congress. Technologies to mantain biological diversity, OTA-F-330. U.S. Goverment Printing Office, Washington (March 1987)Google Scholar
  14. 14.
    Welch, T.A.: A technique for high-performance data compression. IEEE Computer 17(6), 8–19 (1984)CrossRefGoogle Scholar
  15. 15.
    Wolfram, S.: Cellular automata. Los Alamos Science 9, 2–21 (1983)Google Scholar
  16. 16.
    Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • César Andrés
    • 1
  • Ismael Rodríguez
    • 1
  • Fernando Rubio
    • 1
  1. 1.Dept. Sistemas Informáticos y Computación, Facultad de InformáticaUniversidad ComplutenseSpain

Personalised recommendations