Optimization of Feature Processing Chain in Music Classification by Evolution Strategies

  • Igor Vatolkin
  • Wolfgang Theimer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)


In this paper a new method based on evolution strategies (ES) is presented to optimize a classifier for personal music categories. The user assigns songs to multiple personal music categories: Examples from each category are selected in order to train a category-specific classifier using musical features as input. The classifier then ranks all songs according to their similarity to the category examples. Since an exhaustive search for parameters maximizing the classifier performance is not feasible an ES is applied. The experiments show a significant performance increase for various music categories due to the ES optimization.


Audio Feature Evolution Strategy Tatum Time Partition Size Music Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, USA (1995)Google Scholar
  2. 2.
    Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Holden Day (1970)Google Scholar
  3. 3.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience, Chichester (2000)Google Scholar
  4. 4.
    Flexer, A., Gouyon, F., Dixon, S., Widmer, G.: Probabilistic Combination of Features for Music Classification. In: Proc. of the 7th International Conference on Music Information Retrieval (ISMIR), pp. 111–114 (2006)Google Scholar
  5. 5.
    Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hall, M.: Correlation-based Feature Selection Machine Learning. PhD thesis, University of Waikato, New Zealand (1998)Google Scholar
  7. 7.
    McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Interscience, Chichester (1992)CrossRefGoogle Scholar
  8. 8.
    Mierswa, I., Morik, K.: Automatic Feature Extraction for Classifying Audio Data. Machine Learning Journal 58, 127–149 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ong, B.: Structural Analysis and Segmentation of Music Signals. PhD thesis, Universitat Pompeu Fabra, Barcelona, Spain (2006)Google Scholar
  10. 10.
    Peeters, G.: A Large Set of Audio Features for Sound Description (Similarity and Classification) in the CUIDADO Project. IRCAM, France (2004)Google Scholar
  11. 11.
    Pohle, T., Pampalk, E., Widmer, G.: Evaluation of Frequently Used Audio Features for Classification of Music into Perceptual Categories. In: Fourth International Workshop on Content-Based Multimedia Indexing (2005)Google Scholar
  12. 12.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  13. 13.
    Rasmussen, C.: The Infinite Gaussian Mixture Model. In: Advances in Neural Information Processing Systems, pp. 554–560. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Rudolph, G.: An Evolutionary Algorithm for Integer Programming. Parallel Problem Solving from Nature – PPSN III, 139–148 (1994)Google Scholar
  15. 15.
    Scaringella, N., Zoia, G., Mlynek, D.: Automatic Genre Classification of Music Content. IEEE Signal Processing Magazine 23, 133–141 (2006)CrossRefGoogle Scholar
  16. 16.
    Seppänen, J., Eronen, A., Hiipakka, J.: Joint Beat and Tatum Tracking from Music Signals. In: Proc. of the 7th International Conference on Music Information Retrieval (ISMIR), Victoria, pp. 23–28 (2006)Google Scholar
  17. 17.
    Smith, L.: A Tutorial on Principal Components Analysis (2002)Google Scholar
  18. 18.
    Theimer, W., Vatolkin, I., Botteck, M., Buchmann, M.: Content-based Similarity Search and Visualization for Personal Music Categories. In: Sixth International Workshop on Content-Based Multimedia Indexing, London, pp. 9–16 (2008)Google Scholar
  19. 19.
    Theimer, W., Vatolkin, I., Eronen, A.: Definitions of Audio Features for Music Content Description. Algorithm Engineering Report TR08-2-001, Technische Universität Dortmund (2008)Google Scholar
  20. 20.
    Tzanetakis, G., Cook, P.: Musical Classification of Audio Signals. IEEE Transactions on Speech and Audio Processing 10, 293–302 (2002)CrossRefGoogle Scholar
  21. 21.
    Vatolkin, I., Theimer, W.: Introduction to Methods for Music Classification Based on Audio Data, Technical Report NRC-TR-2007-012, Nokia Research Center (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Igor Vatolkin
    • 1
  • Wolfgang Theimer
    • 2
  1. 1.TU DortmundGermany
  2. 2.Research in MotionBochumGermany

Personalised recommendations