Advertisement

A Grouping Genetic Algorithm Using Linear Linkage Encoding for Bin Packing

  • Özgür Ülker
  • Emin Erkan Korkmaz
  • Ender Özcan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

Linear Linkage Encoding (LLE) is a representation method proposed for grouping problems. It has already been used in solving data clustering, graph coloring and timetabling problems based on multi-objective genetic algorithms. In this study, this novel encoding scheme is investigated on bin packing again using a genetic algorithm. Bin packing benchmark problem instances are used to compare the performance of traditional recombination operators and custom made LLE crossover operators which are hybridized with parametrized placement heuristics. The results denote that LLE is a viable candidate for bin packing problem whenever appropriate genetic operators are chosen.

Keywords

Genetic Algorithm Crossover Operator Genetic Operator Intelligent Data Analysis Objective Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backofen, R., Will, S.: Excluding symmetries in constraint-based search. Principles and Practice of Constraint Programming, 73–87 (1999)Google Scholar
  2. 2.
    Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a survey., 46–93 (1997)Google Scholar
  3. 3.
    Crawford, J., Ginsberg, M.L., Luck, E., Roy, A.: Symmetry-breaking predicates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) KR 1996: Principles of Knowledge Representation and Reasoning, pp. 148–159. Morgan Kaufmann, San Francisco (1996)Google Scholar
  4. 4.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  5. 5.
    Dosa, G.: The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD ( I ) ≤ 11/9 OPT ( I ). In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 1–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that employs genetic algorithm with new representation scheme and multiple objectives. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2, 5–30 (1996)CrossRefGoogle Scholar
  8. 8.
    Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley and Sons, Chichester (1998)Google Scholar
  9. 9.
    Falkenauer, E., Delchambre, A.: A genetic algorithm for bin packing and line balancing. In: Proc. of the IEEE 1992 Int. Conf. on Robotics and Automation, Nice, France, pp. 1186–1192 (1992)Google Scholar
  10. 10.
    Glover, F.: Tabu search, part 1. ORSA Journal on Computing 1, 190–206 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  12. 12.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)Google Scholar
  13. 13.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Korkmaz, E.E., Du, J., Alhajj, R., Barker, K.: Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intelligent Data Analysis 10(2), 163–182 (2006)Google Scholar
  15. 15.
    Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematic 28(1), 59–70 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ozcan, E.: Memes, Self-generation and Nurse Rostering. In: PATAT 2006. LNCS, vol. 3867, pp. 85–104. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Ozcan, E., Alkan, A.: A Memetic Algorithm for Solving a Timetabling Problem: An Incremental Strategy. In: Baptiste, P., Kendall, G., Kordon, A.M., Sourd, F. (eds.) Proc. of the 3rd Multidisciplinary Int. Conf. On Scheduling: Theory and Applications, pp. 394–401 (2007)Google Scholar
  18. 18.
    Ozcan, E., Bilgin, B., Korkmaz, E.E.: A Comprehensive Analysis of Hyper-heuristics. Intelligent Data Analysis 12(1), 3–23 (2008)Google Scholar
  19. 19.
    Ozcan, E., Onbasioglu, E.: Memetic Algorithms for Parallel Code Optimization. International Journal of Parallel Programming 35(1), 33–61 (2007)CrossRefGoogle Scholar
  20. 20.
    Radcliffe, N.J.: Formal analysis and random respectful recombination. In: Belew, R.K., Booker, L.B. (eds.) Proc. of the 4th Int. Conf. on GAs, pp. 222–229 (1991)Google Scholar
  21. 21.
    Ulker, O., Ozcan, E., Korkmaz, E.E.: Linear Linkage Encoding in Grouping Problems: Applications on Graph Coloring and Timetabling. In: Proc. of the 6th Int. Conf. on the Practice and Theory of Automated Timetabling, pp. 303–319 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Özgür Ülker
    • 1
  • Emin Erkan Korkmaz
    • 1
  • Ender Özcan
    • 1
  1. 1.Department of Computer EngineeringYeditepe UniversityKadikoy/IstanbulTurkey

Personalised recommendations