Advertisement

Adding Probabilistic Dependencies to the Search of Protein Side Chain Configurations Using EDAs

  • Roberto Santana
  • Pedro Larrañaga
  • Jose A. Lozano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

The problem of finding an optimal positioning for the side chain residues of a protein is called the side chain placement or side chain prediction problem. It can be posed as an optimization problem in the discrete domain. In this paper we use an estimation of distribution algorithm to address this optimization problem. Using a set of 50 difficult protein instances, it is shown that the addition of dependencies between the variables in the probabilistic model can improve the quality of the solutions achieved for most of the instances considered. However, we also show that only when information about the known interactions between the residues is considered in the creation of the probabilistic model, the addition of the dependencies contributes to improve the quality of the solutions obtained.

Keywords

estimation of distribution algorithm protein structure prediction probabilistic models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: Proceedings of the 14th International Conference on Machine Learning, pp. 30–38. Morgan Kaufmann, San Francisco (1997)Google Scholar
  2. 2.
    Belda, I., Madurga, S., Llorá, X., Martinell, M., Tarragó, T., Piqueras, M., Nicolás, E., Giralt, E.: ENPDA: An evolutionary structure-based de novo peptide design algorithm. Journal of Computer-Aided Molecular Design 19(8), 585–601 (2005)CrossRefGoogle Scholar
  3. 3.
    Canutescu, A.A., Shelenkov, A.A., Dunbrack, R.L.: A graph-theory algorithm for rapid protein side-chain prediction. Protein Science 12, 2001–2014 (2003)CrossRefGoogle Scholar
  4. 4.
    Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    De Maeyer, M., Desmet, J., Lasters, I.: The dead-end elimination theorem: Mathematical aspects, implementation, optimization, evaluation, and performance. Methods in Molecular Biology 143, 265–304 (2000)Google Scholar
  6. 6.
    Dunbrack, R.L.: Rotamer libraries in the 21st century. Current Opinion in Structural Biology 12, 431–440 (2002)CrossRefGoogle Scholar
  7. 7.
    Echegoyen, C., Lozano, J.A., Santana, R., Larrañaga, P.: Exact Bayesian network learning in estimation of distribution algorithms. In: Proceedings of the 2007 Congress on Evolutionary Computation CEC 2007, pp. 1051–1058. IEEE Press, Los Alamitos (2007)Google Scholar
  8. 8.
    Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Proceedings of the Second Annual Conference on Uncertainty in Artificial Intelligence, pp. 149–164. Elsevier, Amsterdam (1988)CrossRefGoogle Scholar
  9. 9.
    Hsu, J.C.: Multiple Comparisons: Theory and Methods. Chapman and Hall, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  10. 10.
    Koehl, P., Delarue, M.: Building protein lattice models using self consistent mean field theory. Journal of Chemical Physics 108, 9540–9549 (1998)CrossRefGoogle Scholar
  11. 11.
    Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armañanzas, R., Santafé, G., Pérez, A., Robles, V.: Machine learning in bioinformatics. Briefings in Bioinformatics 7, 86–112 (2006)CrossRefGoogle Scholar
  12. 12.
    Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  13. 13.
    Lee, C., Subbiah, S.: Prediction of protein side-chain conformation by packing optimization. Journal of Molecular Biology 217, 373–388 (1991)CrossRefGoogle Scholar
  14. 14.
    Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.): Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Pelikan, M., Mühlenbein, H.: The bivariate marginal distribution algorithm. In: Roy, R., Furuhashi, T., Chawdhry, P. (eds.) Advances in Soft Computing - Engineering Design and Manufacturing, London, pp. 521–535. Springer, Heidelberg (1999)Google Scholar
  17. 17.
    Pierce, N.A., Winfree, E.: Protein design is NP-hard. Protein Engineering 15(10), 779–782 (2002)CrossRefGoogle Scholar
  18. 18.
    Santana, R., Larrañaga, P., Lozano, J.A.: The role of a priori information in the minimization of contact potentials by means of estimation of distribution algorithms. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 247–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Santana, R., Larrañaga, P., Lozano, J.A.: Side chain placement using estimation of distribution algorithms. Artificial Intelligence in Medicine 39(1), 49–63 (2007)CrossRefGoogle Scholar
  20. 20.
    Santana, R., Larrañaga, P., Lozano, J.A.: Combining variable neighborhood search and estimation of distribution algorithms in the protein side chain placement problem. Journal of Heuristics (to appear, 2008)Google Scholar
  21. 21.
    Santana, R., Larrañaga, P., Lozano, J.A.: Protein folding in simplified models with estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation (to appear, 2008)Google Scholar
  22. 22.
    Santana, R., Ochoa, A., Soto, M.R.: The mixture of trees factorized distribution algorithm. In: Spector, L., Goodman, E., Wu, A., Langdon, W., Voigt, H., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2001, pp. 543–550. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  23. 23.
    Yanover, C., Weiss, Y.: Approximate inference and protein-folding. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15, pp. 1457–1464. MIT Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roberto Santana
    • 1
  • Pedro Larrañaga
    • 2
  • Jose A. Lozano
    • 1
  1. 1.Intelligent Systems Group Department of Computer Science and Artificial IntelligenceUniversity of the Basque CountrySan SebastianSpain
  2. 2.Department of Artificial IntelligenceTechnical University of MadridBoadilla del MonteSpain

Personalised recommendations