Symbolic Reliability Analysis of Self-healing Networked Embedded Systems

  • Michael Glaß
  • Martin Lukasiewycz
  • Felix Reimann
  • Christian Haubelt
  • Jürgen Teich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5219)


In recent years, several network online algorithms have been studied that exhibit self-x properties such as self-healing or self-adaption. These properties are used to improve systems characteristics like, e.g., fault-tolerance, reliability, or load-balancing.

In this paper, a symbolic reliability analysis of self-healing networked embedded systems that rely on self-reconfiguration and self-routing is presented. The proposed analysis technique respects resource constraints such as the maximum computational load or the maximum memory size, and calculates the achievable reliability of a given system. This analytical approach considers the topology of the system, the properties of the resources, and the executed applications. Moreover, it is independent of the used online algorithms that implement the self-healing properties, but determines the achievable upper bound for the systems reliability. Since this analysis is not tailored to a specific online algorithm, it allows a reasonable decision making on the used algorithm by enabling a rating of different self-healing strategies. Experimental results show the effectiveness of the introduced technique even for large networked embedded systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dai, Y.S.: Autonomic computing and reliability improvement. In: Proc. of ISORC 2005, pp. 204–206 (2005)Google Scholar
  2. 2.
    Koch, D., Streichert, T., Dittrich, S., Strengert, C., Haubelt, C., Teich, J.: An operating system infrastructure for fault-tolerant reconfigurable networks. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 202–216. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Proc. of WOSS 2002, pp. 27–32 (2002)Google Scholar
  4. 4.
    Streichert, T., Glaß, M., Wanka, R., Haubelt, C., Teich, J.: Topology-aware replica placement in fault-tolerant embedded networks. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek, R.G. (eds.) ARCS 2008. LNCS, vol. 4934, pp. 23–37. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. on Comp. 35(8), 677–691 (1986)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cankay, H.C., Nair, V.S.S.: Reliability and availability evaluation of self-healing sonet mesh networks. In: Proc. of GLOBECOMM 1997, pp. 252–256 (1997)Google Scholar
  7. 7.
    Cankay, H.C., Nair, V.S.S.: Accelerated reliability analysis for self-healing sonet networks. SIGCOMM Comput. Commun. Rev. 28(4), 268–277 (1998)CrossRefGoogle Scholar
  8. 8.
    Kawamura, R., Sato, K., Tokizawa, I.: Self-healing atm networks based on virtual path concept. IEEE Journal on Selected Areas in Communications 12(1), 120–127 (1994)CrossRefGoogle Scholar
  9. 9.
    Lee, J.: Reliability models of a class of self-healing rings. Microelectronics and Reliability 37(8), 1179–1183 (1997)CrossRefGoogle Scholar
  10. 10.
    Politof, T., Satyanarayana, A.: Efficient algorithms for reliability analysis of planar networks - a survey. IEEE Trans. on Reliability 35(3), 252–259 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ortega, C., Tyrrell, A.: Reliability analysis in self-repairing embryonic systems. In: Proc. of EH 1999, pp. 120–128 (1999)Google Scholar
  12. 12.
    Dressler, F., Dietrich, I.: Lifetime analysis in heterogenous sensor networks. In: Proc. of DSD 2006, pp. 606–616 (2006)Google Scholar
  13. 13.
    Elliot, C., Heile, B.: Self-organizing, self-healing wireless networks. In: Proc. of Aerospace Conference 2000, pp. 149–156 (2000)Google Scholar
  14. 14.
    Glaß, M., Lukasiewycz, M., Streichert, T., Haubelt, C., Teich, J.: Reliability-Aware System Synthesis. In: Proceedings of DATE 2007, pp. 409–414 (2007)Google Scholar
  15. 15.
    Streichert, T., Glaß, M., Haubelt, C., Teich, J.: Design space exploration of reliable networked embedded systems. Journ. on Systems Architecture 53(10), 751–763 (2007)CrossRefGoogle Scholar
  16. 16.
    Izosimov, V., Pop, P., Eles, P., Peng, Z.: Synthesis of fault-tolerant schedules with transparency/performance trade-offs for distributed embedded systems. In: Proceedings of DAC 2004, pp. 550–555 (2004)Google Scholar
  17. 17.
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8, 410–421 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfiability, Boolean Moelding and Computation 2, 1–25 (2006)zbMATHGoogle Scholar
  20. 20.
    Rauzy, A.: New Algorithms for Fault Tree Analysis. Reliability Eng. and System Safety 40, 202–211 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Glaß
    • 1
  • Martin Lukasiewycz
    • 1
  • Felix Reimann
    • 1
  • Christian Haubelt
    • 1
  • Jürgen Teich
    • 1
  1. 1.Hardware/Software Co-Design, Department of Computer ScienceUniversity of Erlangen-NurembergGermany

Personalised recommendations