Advertisement

Using CBR Systems for Leukemia Classification

  • Juan M. Corchado
  • Juan F. De Paz
Conference paper
  • 1.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5271)

Abstract

The continuous advances in genomics, and specifically in the field of transcriptome, require novel computational solutions capable of dealing with great amounts of data. Each expression analysis needs different techniques to explore the data and extract knowledge which allow patients classification. This paper presents a hybrid systems based on Case-based reasoning (CBR) for automatic classification of leukemia patients from Exon array data. The system incorporates novel algorithms for data mining that allow to filter and classify. The system has been tested and the results obtained are presented in this paper.

Keywords

Case-based Reasoning dendogram leukemia classification data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shortliffe, E.H., Cimino, J.J.: Biomedical Informatics: Computer Applications in Health Care and Biomedicine. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Tsoka, S., Ouzounis, C.: Recent developments and future directions in computational genomics. FEBS Letters 480(1), 42–48 (2000)CrossRefGoogle Scholar
  3. 3.
    Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)CrossRefGoogle Scholar
  4. 4.
    Rubnitz, J.E., Hijiya, N., Zhou, Y., Hancock, M.L., Rivera, G.K., Pui, C.: Lack of benefit of early detection of relapse after completion of therapy for acute lymphoblastic leukemia. Pediatric Blood & Cancer 44(2), 138–141 (2005)CrossRefGoogle Scholar
  5. 5.
    Affymetrix, GeneChip Human Exon 1.0 ST Array, http://www.affymetrix.com/products/arrays/specific/Exon.affx
  6. 6.
    Quackenbush, J.: Computational analysis of microarray data. Nature Review Genetics 2(6), 418–427 (2001)CrossRefGoogle Scholar
  7. 7.
    Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R., Lockhart, D.H.: High density synthetic oligonucleotide arrays. Nature Genetics 21, 20–24 (1999)CrossRefGoogle Scholar
  8. 8.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  9. 9.
    Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P.: Exploration, Normalization, and Summaries of High density Oligonucleotide Array Probe Level Data. Biostatistics 4, 249–264 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics, 59–69 (1982)Google Scholar
  11. 11.
    Fritzke, B.: A growing neural gas network learns topologies. Advances in Neural Information Processing Systems 7, 625–632 (1995)Google Scholar
  12. 12.
    Martinetz, T.: Competitive Hebbian learning rule forms perfectly topology preserving maps. In: ICANN 1993: International Conference on Artificial Neural Networks, pp. 427–434 (1993)Google Scholar
  13. 13.
    Martinetz, T., Schulten, K.: A neural-gas network learns topologies. In: Kohonen, T., et al. (eds.) Artificial Neural Networks, Amsterdam, pp. 397–402 (1991)Google Scholar
  14. 14.
    Brunelli, R.: Histogram Analysis for Image Retrieval. Pattern Recognition 34, 1625–1637 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Gariepy, R., Pepe, W.D.: On the Level sets of a Distance Function in a Minkowski Space. Proceedings of the American Mathematical Society 31(1), 255–259 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (2002)Google Scholar
  17. 17.
    Riverola, F., Díaz, F., Corchado, J.M.: Gene-CBR: a case-based reasoning tool for cancer diagnosis using microarray datasets. Computational Intelligence 22, 254–268 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)Google Scholar
  19. 19.
    Saitou, N., Nie, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. 4, 406–425 (1987)Google Scholar
  20. 20.
    Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. The Principles and Practice of Numerical Classication. W.H. Freeman Company, San Francisco (1973)zbMATHGoogle Scholar
  21. 21.
    Fix, E., Hodges, J.L.: Discriminatory analysis, nonparametric discrimination consistency properties, Technical Report 4, United States Air Force, Randolph Field, TX (1951)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Juan M. Corchado
    • 1
  • Juan F. De Paz
    • 1
  1. 1.Departamento de Informática y AutomáticaUniversidad de SalamancaSalamanca

Personalised recommendations