Advertisement

Modelling of Modular Robot Configurations Using Graph Theory

  • José Baca
  • Ariadna Yerpes
  • Manuel Ferre
  • Juan A. Escalera
  • Rafael Aracil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5271)

Abstract

Modular robots are systems that can change its geometry or configuration when connecting more modules or when rearranging them in a different manner to perform a variety of tasks. Graph theory can be used to describe modular robots configurations, hence the possibility to determine the flexibility of the robot to move from one point to another. When the robot’s configurations are represented in a mathematical way, forward kinematics can be obtained.

Keywords

Modular Robots Graph Theory Configurations for Displacement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yim, M., Duff, D., Roufas, K.D.: Walk on the Wild Side. IEEE Robotics & Automation Magazine 9(4), 49–53 (2002)CrossRefGoogle Scholar
  2. 2.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K.Y., Kokaji, S.: M-TRAN: Self-Reconfigurable Modular Robotis System. IEEE/ASME Trans. Mechatronics 7(4), 431–441 (2002)CrossRefGoogle Scholar
  3. 3.
    Castano, A., Behar, A., Will, P.M.: The CONRO Modules for Reconfigurable Robots. IEEE/ASME Trans. Mechatronics 7, 403–409 (2002)CrossRefGoogle Scholar
  4. 4.
    Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode Locomotion for Reconfigurable Robots. Autonomous Robots 20(2), 165–177 (2006)CrossRefGoogle Scholar
  5. 5.
    Escalera, J.A., Ferre, M., Aracil, R., Baca, J.: ROBMAT: Teleoperation of a Modular Robot for Collaborative Manipulation. In: Proc. 11th International Conference, Knowledge-Based Intelligent Information and Engineering Systems, Part 2, pp. 1204–1213 (September 2007)Google Scholar
  6. 6.
    Crespo, A., Baca, J., Yerpes, A., Ferre, M., Aracil, R., Escalera, J.A.: CAN Application in Modular Systems. In: 12th International CAN Conference, Barcelona, Spain, pp. 01-1–01-7 (2008)Google Scholar
  7. 7.
    Chen, I.-M., Yang, G.: Automatic generation of dynamics for modular robots with hybrid geometry. In: Proceedings of 1997 IEEE International Conference on Robotics and Automation, April 20-25, vol. 3, pp. 2288–2293 (1997)Google Scholar
  8. 8.
    Freudenstein, F., Dobrjanskyj, L.: On a Theory for the Type Synthesis of Mechanisms. In: Proc. 11th Int. Congress of Applied Mechanics, Munich, pp. 420–428 (1964)Google Scholar
  9. 9.
    Gross, J.L., Yellen, J.: Graph Theory and Its applications. Chapman & Hall/CRC (2006)Google Scholar
  10. 10.
    Chen, I.-M., Yang, G., Kang, I.-G.: Numerical inverse kinematics for modular reconfigurable robots. Robotic Systems J. 14, 213–225 (1999)CrossRefGoogle Scholar
  11. 11.
    Ball, R.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge (1900)Google Scholar
  12. 12.
    Brockett, R.: Robotic Manipulators and the Product of Exponential Formula. In: Mathematical Theory of Networks and Systems, pp. 120–129 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • José Baca
    • 1
  • Ariadna Yerpes
    • 1
  • Manuel Ferre
    • 1
  • Juan A. Escalera
    • 1
  • Rafael Aracil
    • 1
  1. 1.Universidad Politécnica de MadridMadridSpain

Personalised recommendations