Advertisement

On the Need of Hybrid Intelligent Systems in Modular and Multi Robotics

  • R. J. Duro
  • M. Graña
  • J. de Lope
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5271)

Abstract

The area of cognitive or intelligent robotics is moving from the single robot control and behavior problem to that of controlling multiple robots operating together and even collaborating in dynamic and unstructured environments. This paper introduces the topic and provides a general overview of the current state of the field of modular and multi robotics taking both of these subareas as different representations of the same problem: how to coordinate multiple elements in order to perform useful tasks. The review shows where Hybrid Intelligent Systems could provide key contributions to the advancement of the field.

Keywords

Intelligent robotics multi-robot systems modular robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cordes, S., et al.: Autonomous sewer inspection with a wheeled, multiarticulated robot. Robotics and Autonomous Systems 21(1), 123–135 (1997)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Yim, M.: Locomotion With A Unit-Modular Reconfigurable Robot in Department of Computer Science. Stanford University (1995)Google Scholar
  3. 3.
    Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a modular reconfigurable robot (2000)Google Scholar
  4. 4.
    Yim, M., Duff, D.G., Roufas, K.D.: Walk on the wild side [modular robot motion]. Robotics & Automation Magazine, IEEE 9(4), 49–53 (2002)CrossRefGoogle Scholar
  5. 5.
    Yim, M., Ying, Z., Duff, D.: Modular robots. Spectrum, IEEE 39(2), 30–34 (2002)CrossRefGoogle Scholar
  6. 6.
    Ying, Z., et al.: Scalable and reconfigurable configurations and locomotion gaits for chain-type modular reconfigurable robots (2003)Google Scholar
  7. 7.
    Chen, I.M.: Rapid response manufacturing through a rapidly reconfigurable robotic workcell. Robotics and Computer-Integrated Manufacturing 17(3), 199–213 (2001)CrossRefGoogle Scholar
  8. 8.
    Sack, M., et al.: Intelligent control of modular kinematics - the robot platform STRIUS (2002)Google Scholar
  9. 9.
    Vassilvitskii, S., et al.: On the general reconfiguration problem for expanding cube style modular robots (2002)Google Scholar
  10. 10.
    Castano, A., Behar, A., Will, P.M.: The Conro modules for reconfigurable robots. IEEE/ASME Transactions on Mechatronics 7(4), 403–409 (2002)CrossRefGoogle Scholar
  11. 11.
    Golovinsky, A., et al.: PolyBot and PolyKinetic/spl trade/ System: a modular robotic platform for education (2004)Google Scholar
  12. 12.
    Hafez, M., Lichter, M.D., Dubowsky, S.: Optimized binary modular reconfigurable robotic devices. IEEE/ASME Transactions on Mechatronics 8(1), 18–25 (2003)CrossRefGoogle Scholar
  13. 13.
    Karbasi, H., Huissoon, J.P., Khajepour, A.: Uni-drive modular robots: theory, design, and experiments. Mechanism and Machine Theory 39(2), 183–200 (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Tokashiki, H., et al.: Development of a transformable mobile robot composed of homogeneous gear-type units (2003)Google Scholar
  15. 15.
    Campbell, J., Pillai, P., Goldstein, S.C.: The Robot is the Tether: Active, Adaptive Power Routing for Modular Robots With Unary Inter-robot Connectors (2005)Google Scholar
  16. 16.
    Carrino, L., Polini, W., Sorrentino, L.: Modular structure of a new feed-deposition head for a robotized filament winding cell. Composites Science and Technology 63(15), 2255–2263 (2003)CrossRefGoogle Scholar
  17. 17.
    Murata, S., et al.: Concept of self-reconfigurable modular robotic system. Artificial Intelligence in Engineering 15(4), 383–387 (2001)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kurokawa, H., et al.: Self-reconfigurable M-TRAN structures and walker generation. Robotics and Autonomous Systems (2005)Google Scholar
  19. 19.
    Yoshida, E., et al.: Self-reconfigurable modular robots -hardware and software development in AIST (2003)Google Scholar
  20. 20.
    Terada, Y., Murata, S.: Automatic assembly system for a large-scale modular structure - hardware design of module and assembler robot (2004)Google Scholar
  21. 21.
    Kurokawa, H., et al.: Self-reconfigurable modular robot (M-TRAN) and its motion design (2002)Google Scholar
  22. 22.
    Murata, S., et al.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics 7(4), 431–441 (2002)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Yim, M., et al.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Transactions on Mechatronics 7(4), 442–451 (2002)CrossRefGoogle Scholar
  24. 24.
    Liping, Z., et al.: Position-sensing based a new docking system of RPRS (2004)Google Scholar
  25. 25.
    Patterson, S.A., Knowles Jr., K.A., Bishop, B.E.: Toward magnetically-coupled reconfigurable modular robots (2004)Google Scholar
  26. 26.
    Yang, G., Chen, I.M.: A novel kinematic calibration algorithm for reconfigurable robotic systems (1997)Google Scholar
  27. 27.
    Chen, I.M., Guilin, Y.: Inverse kinematics for modular reconfigurable robots (1998)Google Scholar
  28. 28.
    Yangiong, F., Xifang, Z., Xu, W.L.: Kinematics and dynamics of reconfigurable modular robots (1998)Google Scholar
  29. 29.
    Seong-Ho, K., Pryor, M.W., Tesar, D.: Kinematic model and metrology system for modular robot calibration (2004)Google Scholar
  30. 30.
    Bonaventura, C.S., Jablokow, K.W.: A modular approach to the dynamics of complex multirobot systems. IEEE Transactions on Robotics and Automation 21(1), 26–37 (2005)Google Scholar
  31. 31.
    Yang, G., Chen, I.M.: Task-based optimization of modular robot configurations: minimized degree-of-freedom approach. Mechanism and Machine Theory 35(4), 517–540 (2000)zbMATHCrossRefGoogle Scholar
  32. 32.
    Lemay, J., Notash, L.: Configuration engine for architecture planning of modular parallel robots. Mechanism and Machine Theory 39(1), 101–117 (2004)zbMATHCrossRefGoogle Scholar
  33. 33.
    Zhang, W.J., Liu, S.N., Li, Q.: Data/knowledge representation of modular robot and its working environment. Robotics and Comp.-Integrated Manuf. 16(2-3), 143–159 (2000)CrossRefGoogle Scholar
  34. 34.
    Ko, A., Lau, T.L., Lau, H.Y.K.: Topological representation and analysis method for multi-port and multi-orientation docking modular robots (2004)Google Scholar
  35. 35.
    Saidani, S.: Self-reconfigurable robots topodynamic (2004)Google Scholar
  36. 36.
    Kristensen, S.: Sensor planning with Bayesian decision theory. Robotics and Autonomous Systems 19(3-4), 273–286 (1997)CrossRefGoogle Scholar
  37. 37.
    Makarenko, A., Durrant-Whyte, H.: Decentralized Bayesian algorithms for active sensor networks. Information Fusion (in press, 2005) (Corrected Proof)Google Scholar
  38. 38.
    Dudek, G., et al.: A taxonomy for swarm robots. In: Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems 1993, IROS 1993 (1993)Google Scholar
  39. 39.
    Sugawara, K., Watanabe, T.: Swarming robots - collective behavior of interacting robots. In: SICE 2002. Proceedings of the 41st SICE Annual Conference (2002)Google Scholar
  40. 40.
    Stormont, D.P., et al.: Building better swarms through competition: lessons learned from the AAAI/RoboCup Rescue Robot competition (2003)Google Scholar
  41. 41.
    Doty, K.L., Van Aken, R.E.: Swarm robot materials handling paradigm for a manufacturing workcell. In: 1993 IEEE International Conference on in Robotics and Automation, 1993. Proceedings (1993)Google Scholar
  42. 42.
    Szu, H., et al.: Collective and distributive swarm intelligence: evolutional biological survey. International Congress Series, vol. 1269, pp. 46–49 (2004)Google Scholar
  43. 43.
    Sahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Application. Lecture Notes in Computer Science, pp. 10–20 (2005)Google Scholar
  44. 44.
    Johnson, J., Sugisaka, M.: Complexity science for the design of swarm robot control systems. In: 26th Annual Conf. Industrial Electronics Society, IECON 2000. IEEE, Los Alamitos (2000)Google Scholar
  45. 45.
    Sugawara, K., Watanabe, T.: Swarming robots-foraging behavior of simple multirobot system. In: IEEE/RSJ Int. Conference on Intelligent Robots and System, 2002 (2002)Google Scholar
  46. 46.
    Sugawara, K., Sano, M.: Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system. Physica D: Nonlinear Phenomena 100(3-4), 343–354 (1997)zbMATHCrossRefGoogle Scholar
  47. 47.
    Salemi, B., Will, P., Shen, W.M.: Distributed task negotiation in self-reconfigurable robots. In: Intelligent Robots and Systems, 2003 (IROS 2003). Proceedings (2003)Google Scholar
  48. 48.
    Sahin, E., et al.: SWARM-BOT: pattern formation in a swarm of self-assembling mobile robots. In: IEEE International Conference on Systems, Man and Cybernetics, 2002 (2002)Google Scholar
  49. 49.
    Fukuda, T., Takagawa, I., Hasegawa, Y.: From intelligent robot to multi-agent robotic system. In: Integration of Knowledge Intensive Multi-Agent Systems (2003)Google Scholar
  50. 50.
    Stilwell, D.J., Bishop, B.E.: A framework for decentralized control of autonomous vehicles. In: Robotics and Automation, 2000. Proceedings. ICRA 2000 (2000)Google Scholar
  51. 51.
    Dunbar, T.W., Esposito, J.M.: Artificial potential field controllers for robust communications in a network of swarm robots. In: Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005, SSST 2005 (2005)Google Scholar
  52. 52.
    Dongtang, M., Jibo, W., Zhaowen, Z.: A novel optical signal detecting and processing method for swarm robot vision system. In: 2003 Proceedings of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing (2003)Google Scholar
  53. 53.
    Purnamadjaja, A.H., Russell, R.A.: Pheromone communication: implementation of necrophoric bee behaviour in a robot swarm. In: 2004 IEEE Conference on Robotics, Automation and Mechatronics (2004)Google Scholar
  54. 54.
    Payton, D., Estkowski, R., Howard, M.: Compound behaviors in pheromone robotics. Robotics and Autonomous Systems 44(3-4), 229–240 (2003)CrossRefGoogle Scholar
  55. 55.
    Payton, D., Estkowski, R., Howard, M.: Pheromone Robotics and the Logic of Virtual Pheromones. Lecture Notes in Computer Science, pp. 45–57 (2005)Google Scholar
  56. 56.
    Caamaño, P., Becerra, J.A., Duro, R.J., Bellas, F.: Incremental Evolution of Stigmergy-Based Multi Robot Controllers Through Utility Functions. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 1187–1195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  57. 57.
    Kumar, V., Sahin, F.: Cognitive maps in swarm robots for the mine detection application. In: IEEE Int. Conference on Systems, Man and Cybernetics (2003)Google Scholar
  58. 58.
    Pack, D.J., Mullins, B.E.: Toward finding an universal search algorithm for swarm robots. In: Intelligent Robots and Systems (IROS 2003) (2003)Google Scholar
  59. 59.
    Cassinis, R., et al.: Strategies for navigation of robot swarms to be used in landmines detection. In: Third European Workshop on Advanced Mobile Robots, 1999 (Eurobot 1999) (1999)Google Scholar
  60. 60.
    Pack, D.J., Mullins, B.E.: Toward finding an universal search algorithm for swarm robots. In: 2003 Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (2003)Google Scholar
  61. 61.
    Dahm, I., et al.: Decentral control of a robot-swarm. In: Proceedings of Autonomous Decentralized Systems, ISADS 2005 (2005)Google Scholar
  62. 62.
    Peleg, D.: Distributed Coordination Algorithms for Mobile Robot Swarms: New Directions and Challenges. Lecture Notes in Computer Science, pp. 1-12 (2005)Google Scholar
  63. 63.
    Shen, W.-M., et al.: Hormone-Inspired Self-Organization and Distributed Control of Robotic Swarms. Autonomous Robots 17(1), 93–105 (2004)CrossRefGoogle Scholar
  64. 64.
    Mondada, F., et al.: Swarm-Bot: A New Distributed Robotic Concept. Autonomous Robots 17(2 - 3), 193–221 (2004)CrossRefGoogle Scholar
  65. 65.
    Helwig, S., Haubelt, C., Teich, J.: Modeling and Analysis of Indirect Communication in Particle Swarm Optimization. In: The 2005 IEEE Congress on Evolutionary Computation (2005)Google Scholar
  66. 66.
    Wessnitzer, J., Melhuish, C.: Collective Decision-Making and Behaviour Transitions. In: Distributed Ad Hoc Wireless Networks of Mobile Robots: Target-Hunting. LNCS, pp. 893–902 (2003)Google Scholar
  67. 67.
    Trianni, V., Nolfi, S., Dorigo, M.: Cooperative hole avoidance in a swarm-bot. Robotics and Autonomous Systems (in press) (corrected proof)Google Scholar
  68. 68.
    Trianni, V., Labella, T.H., Dorigo, M.: Evolution of Direct Communication for a Swarm-bot Performing Hole Avoidance. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 130–141. Springer, Heidelberg (2004)Google Scholar
  69. 69.
    Dorigo, M., et al.: Evolving Self-Organizing Behaviors for a Swarm-Bot. Autonomous Robots 17(2 - 3), 223–245 (2004)CrossRefGoogle Scholar
  70. 70.
    Rothermich, J.A., Ecemis, I., Gaudiano, P.: Distributed Localization and Mapping with a Robotic Swarm. LNCS, pp. 58–69 (2005)Google Scholar
  71. 71.
    Cohen, W.W.: Adaptive mapping and navigation by teams of simple robots. Robotics and Autonomous Systems 18(4), 411–434 (1996)CrossRefGoogle Scholar
  72. 72.
    Di Marco, M., et al.: Simultaneous localization and map building for a team of cooperating robots: a set membership approach. IEEE Trans. Rob. and Aut. 19(2), 238–249 (2003)CrossRefGoogle Scholar
  73. 73.
    Stroupe, A.W., Balch, T.: Value-based action selection for observation with robot teams using probabilistic techniques. Robotics and Autonomous Systems 50(2-3), 85–97 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • R. J. Duro
    • 1
  • M. Graña
    • 2
  • J. de Lope
    • 3
  1. 1.Grupo Integrado de IngenieríaUniversidade da CoruñaSpain
  2. 2.Universidad del País VascoSpain
  3. 3.Percepción Computacional y RobóticaUniversidad Politécnica de MadridSpain

Personalised recommendations