Advertisement

Minimizing Energy Consumption in Heating Systems under Uncertainty

  • José Ramón Villar
  • Enrique de la Cal
  • Javier Sedano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5271)

Abstract

Energy saving systems are needed to reduce the energy taxes, so the electric energy remains balanced. In Spain, a local company that produces electric heaters needs an energy saving device to be integrated with the heaters. The building regulations in Spain introduce five different climate zones, so such device must meet all of them. In previous works the uncertainty in the process was shown, and the different configurations that must be included to accomplish the Spanish regulations were established. It was proven that a hybrid artificial intelligent systems (HAIS) could afford the energy saving reasonably, even though some improvements must be introduced. This work proposes a modified solution to relax the hardware restrictions and to solve the lack of distribution observed. The modified energy saving HAIS is detailed and compared with that obtained in previous works.

Keywords

Fuzzy systems Hybrid Artificial Intelligence Systems Real World Applications Electric Energy saving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bojic, M., Despotovic, M., Malesevic, J., Sokovic, D.: Evaluation of the impact of internal partitions on energy conservation for residential buildings in Serbia. Building and Environment 42, 1644–1653 (2007)CrossRefGoogle Scholar
  2. 2.
    CNE, Comisión Nacional de Energía, http://www.cne.es/cne/Home
  3. 3.
    Davidsson, P., Boman, M.: Distributed monitoring and control of office buildings by embedded agents. Information Sciences 171, 293–307 (2005)CrossRefGoogle Scholar
  4. 4.
    Koroneos, C., Kottas, G.: Energy consumption modeling analysis and environmental impact assessment of model house in thessaloniki (Greece). Building and Environment 42, 122–138 (2007)CrossRefGoogle Scholar
  5. 5.
    Lewis, P., Alexander, D.K.: HTB2: A flexible model for dynamic building simulation. Building and Environment 1, 7–16 (1990)CrossRefGoogle Scholar
  6. 6.
    Sánchez, L., Villar, J.R.: Obtaining transparent models of chaotic systems with multiobjective simulated annealing algorithms. Information Sciences 178(4), 952–970 (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Villar, J.R., de la Cal, E., Sedano, J.: Energy saving by means of fuzzy systems. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 155–167. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Villar, J.R., de la Cal, E., Sedano, J.: Energy Savings by means of Multi Agent Systems and Fuzzy Systems. In: International Workshop on Practical Applications of Agents and Multi-agent Systems (2007)Google Scholar
  9. 9.
    Villar, J.R., de la Cal, E., Sedano, J.: A Fuzzy Logic efficient Energy Saving system. Integrated Computer Arded Engineering (submitted, 2008)Google Scholar
  10. 10.
    de la Presidencia, M.,, B.O.E.: num 207, Real Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Térmicas en edificios, Agosto (2007), http://www.boe.es
  11. 11.
    de Vivienda, M.: Dirección General de Arquitectura y Política de Vivienda, Documento Básico de Ahorro de Energía. Limitación de la demanda de Energía (2005)Google Scholar
  12. 12.
    UNESA, Asociación Española de la Industria Eléctrica, http://www.unesa.es

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • José Ramón Villar
    • 1
  • Enrique de la Cal
    • 1
  • Javier Sedano
    • 2
  1. 1.Computer Science departmentUniversity of OviedoGijónSpain
  2. 2.Electromechanic departmentUniversity of BurgosBurgosSpain

Personalised recommendations