Advertisement

Ambient Temperature Modelling through Traditional and Soft Computing Methods

  • Francesco Ceravolo
  • Matteo De Felice
  • Stefano Pizzuti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5271)

Abstract

This paper presents a new hybrid approach based both on traditional and soft computing techniques to provide ambient temperature for those places where such a datum is not available. Indeed, we combine neural networks with the nearest neighbouring algorithm; we use a fuzzy logic decision maker and later compare the results of each single technique to the hybrid one. Experiments have been performed on several Italian places; results have shown a remarkable improvement in accuracy compared to single methods.

Keywords

Neural Networks Fuzzy Logic Nearest Neighbour algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atlante Italiano della Radiazione Solare, http://www.solaritaly.enea.it/
  2. 2.
    Babuska, R.: Fuzzy modelling: principles, methods and applications. In: International Summer School on Fuzzy Logic Control: Advances in Methodology, Ferrara (1998)Google Scholar
  3. 3.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  4. 4.
    Erbs, D.G., Klein, S.A., Beckman, W.A.: Estimation of degree-days and ambient temperature bin data from monthly-average temperatures. Ashrae Journal, 60–65 (1983)Google Scholar
  5. 5.
    Haykin, S.: Neural Networks, a comprehensive foundation, 2nd edn. Prentice Hall, New Jersey (1999)zbMATHGoogle Scholar
  6. 6.
    Klein, S.A., Beckman, W.A., Mitchell, J.W., Duffie, J.A., Duffie, N.A., Freeman, T.L., Mitchell, J.C., Braun, J.E., Evans, B.L., Kummer, J.P., Urban, R.E., Fiksel, A., Thornton, J.W., Blair, N.J., Williams, P.M., Bradley, D.E.: TRNSYS, a Transient System Simulation Program. Solar Energy Lab, Univ. of Wisconsin-Madison (2000)Google Scholar
  7. 7.
    Kosko, B.: Neural networks and fuzzy systems. Prentice-Hall, Englewood Cliffs (1992)zbMATHGoogle Scholar
  8. 8.
    Mitra, A.K., Nath, S.: Forecasting maximum temperatures via fuzzy nearest neighbour model over Delhi. Appl. Comput. Math. 6(2), 288–294 (2007)Google Scholar
  9. 9.
    Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neur. Netw. 1(1), 4–27 (1990)CrossRefGoogle Scholar
  10. 10.
    Nikravesh, M., Farell, A.E., Stanford, T.G.: Model identification of non linear time variant processes via artificial neural network. Computes and Chemical Engineering 20(11), 1277–1290 (1996)CrossRefGoogle Scholar
  11. 11.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by backpropagating errors. Nature 323, 533–536 (1986)CrossRefGoogle Scholar
  12. 12.
    Şen, Z.: Fuzzy algorithm for estimation irradiation from sunshine duration. Solar Energy 63(1), 39–49 (1998)CrossRefGoogle Scholar
  13. 13.
    Sodoudi, S.: Estimation of temperature, precipitation and evaporation with Neuro-Fuzzy method. In: Workshop of statistical downscaling, Oslo (2005)Google Scholar
  14. 14.
    Tatli, H., Sen, Z.: A new fuzzy modeling approach for predicting the maximum daily temperature from a time series. Journal of Engineering and Environmental Science 23, 173–180 (1999)Google Scholar
  15. 15.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zimmerman, H.J.: Fuzzy set theory. Kluwer Academic, Boston (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Francesco Ceravolo
    • 1
  • Matteo De Felice
    • 1
  • Stefano Pizzuti
    • 1
  1. 1.E.N.E.A. – Casaccia R.C.RomeItaly

Personalised recommendations