A Heuristic NLP Based Approach for Getting Didactic Resources from Electronic Documents

  • Mikel Larrañaga
  • Jon A. Elorriaga
  • Ana Arruarte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5192)


The development of Computer Supported Learning Systems is a hard task and, therefore, they are not as broadly used as expected yet. Some authors have claimed that tools for generating learning material in automatic or semiautomatic way are needed. This paper describes how didactic resources can be semi automatically generated from electronic documents using ontologies and Natural Language Processing techniques. Gathering atomic didactic resources and combining them is essential to get results that match human instructors’ expects. Several didactic resource similarity measuring methods have been implemented and tested.


Computer Supported Learning Systems Semi Automatic Domain Acquisition Didactic Resources Ontologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murray, T., Blessing, S., Ainsworth, S. (eds.): Authoring Tools for Advanced Technology Learning Environments. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  2. 2.
    Brusilovsky, P., et al.: Interactive Authoring Support for Adaptive Educational Systems. In: 12th International Conference in Artificial Intelligence in Education. IOS Press, Amsterdam (2005)Google Scholar
  3. 3.
    Arroyo, I., Schapira, A., Woolf, B.P.: Authoring and Sharing Word Problems with AWE. In: 10th International Conference on Artificial Intelligence in Education. IOS Press, San Antonio (2001)Google Scholar
  4. 4.
    Ritter, S., et al.: Authoring Content in the PAT Algebra Tutor. Journal of Interactive Media in Education 9 (1998)Google Scholar
  5. 5.
    Murray, T.: Authoring Intelligent Tutoring Systems: An analysis of the state of the art. International Journal of Artificial Intelligence in Education 10, 98–129 (1999)Google Scholar
  6. 6.
    Larrañaga, M., et al.: Acquisition of the Domain Structure from Document Indexes Using Heuristic Reasoning. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Hughes, T., Ramage, D.: Lexical Semantic Relatedness With Random Graph Walks. In: Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague (2007)Google Scholar
  8. 8.
    Meder, N.: Didaktische ontologien. In: Globalisierung und Wissensorganisation: Neue Aspekte für Wissen, Wissenschaft und Informationssysteme (2000)Google Scholar
  9. 9.
    Leidig, T.: L3–Towards an Open Learning Environment. ACM Journal of Educational Resources in Computing 1(1), 5–11 (2001)CrossRefGoogle Scholar
  10. 10.
    Larrañaga, M., et al.: Towards Collaborative Domain Module Authoring. In: IEEE International Conference on Advanced Learning Technologies 2007 (ICALT 2007) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mikel Larrañaga
    • 1
  • Jon A. Elorriaga
    • 1
  • Ana Arruarte
    • 1
  1. 1.Department of Languages and Information SystemsUniversity of the Basque CountryDonostia

Personalised recommendations