Advertisement

Efficient Wayfinding in Hierarchically Regionalized Spatial Environments

  • Thomas Reineking
  • Christian Kohlhagen
  • Christoph Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5248)

Abstract

Humans utilize region-based hierarchical representations in the context of navigation. We propose a computational model for representing region hierarchies and define criteria for automatically generating them. We devise a cognitively plausible online wayfinding algorithm exploiting the hierarchical decomposition given by regions. The algorithm allows an agent to derive plans with decreasing detail level along paths, enabling the agent to obtain the next action in logarithmic time and complete solutions in almost linear time. The resulting paths are reasonable approximations of optimal shortest paths.

Keywords

Navigation hierarchical spatial representation regions region hierarchy wayfinding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thrun, S.: Robotic mapping: A survey (2002)Google Scholar
  2. 2.
    Werner, S., Krieg-Brückner, B., Herrmann, T.: Modelling navigational knowledge by route graphs. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition II 2000. LNCS (LNAI), vol. 1849, pp. 295–317. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Kuipers, B.: The spatial semantic hierarchy. Technical Report AI99-281 (29, 1999)Google Scholar
  4. 4.
    Car, A., Frank, A.: General principles of hierarchical reasoning - the case of wayfinding. In: SDH 1994, Sixth Int. Symposium on Spatial Data Handling, Edinburgh, Scotland (September 1994)Google Scholar
  5. 5.
    Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path-finding. Journal of Game Development 1(1), 7–28 (2004)Google Scholar
  6. 6.
    Cagigas, D.: Hierarchical D* algorithm with materialization of costs for robot path planning. Robotics and Autonomous Systems 52(2-3), 190–208 (2005)CrossRefGoogle Scholar
  7. 7.
    Graham, S., Joshi, A., Pizlo, Z.: The traveling salesman problem: a hierarchical model. Memory & Cognition 28(7), 1191–1204 (2000)Google Scholar
  8. 8.
    Pizlo, Z., Stefanov, E., Saalweachter, J., Li, Z., Haxhimusa, Y., Kropatsch, W.: Traveling salesman problem: a foveating pyramid model. Journal of Problem Solving 1, 83–101 (2006)Google Scholar
  9. 9.
    Tomko, M., Winter, S.: Recursive construction of granular route directions. Journal of Spatial Science 51(1), 101–115 (2006)Google Scholar
  10. 10.
    Stevens, A., Coupe, P.: Distortions in judged spatial relations. Cognitive Psychology 10, 526–550 (1978)CrossRefGoogle Scholar
  11. 11.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory and Cognition 13(3), 208–217 (1985)Google Scholar
  12. 12.
    McNamara, T.P.: Mental representations of spatial relations. Cognitive Psychology 18, 87–121 (1986)CrossRefGoogle Scholar
  13. 13.
    Wiener, J., Mallot, H.: ’Fine-to-coarse’ route planning and navigation in regionalized environments. Spatial Cognition and Computation 3(4), 331–358 (2003)CrossRefGoogle Scholar
  14. 14.
    Wiener, J., Schnee, A., Mallot, H.: Navigation strategies in regionalized environments. Technical Report 121 (January 2004)Google Scholar
  15. 15.
    Voicu, H.: Hierarchical cognitive maps. Neural Networks 16(5-6), 569–576 (2003)CrossRefGoogle Scholar
  16. 16.
    Thomas, R., Donikian, S.: A model of hierarchical cognitive map and human memory designed for reactive and planned navigation. In: 4th International Space Syntax Symposium, Londres (June 2003)Google Scholar
  17. 17.
    Gadzicki, K., Gerkensmeyer, T., Hünecke, H., Jäger, J., Reineking, T., Schult, N., Zhong, Y., et al.: Project MazeXplorer. Technical report, University of Bremen (2007)Google Scholar
  18. 18.
    Schill, K., Zetzsche, C., Wolter, J.: Hybrid architecture for the sensorimotor representation of spatial configurations. Cognitive Processing 7, 90–92 (2006)CrossRefGoogle Scholar
  19. 19.
    Schill, K., Umkehrer, E., Beinlich, S., Krieger, G., Zetzsche, C.: Scene analysis with saccadic eye movements: Top-down and bottom-up modeling. Journal of Electronic Imaging 10(1), 152–160 (2001)CrossRefGoogle Scholar
  20. 20.
    Montello, D.R., Goodchild, M.F., Gottsegen, J., Fohl, P.: Where’s downtown?: Behavioral methods for determining referents of vague spatial queries. Spatial Cognition & Computation 3(2-3), 185–204 (2003)CrossRefGoogle Scholar
  21. 21.
    Han, J., Kamber, M., Tung, A.K.H.: Spatial clustering methods in data mining. In: Geographic Data Mining and Knowledge Discovery, pp. 188–217. Taylor & Francis, Inc., Bristol (2001)Google Scholar
  22. 22.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Barbehenn, M.: A note on the complexity of dijkstra’s algorithm for graphs with weighted vertices. IEEE Trans. Comput. 47(2), 263 (1998)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Junghanns, A.: Pushing the limits: new developments in single-agent search. PhD thesis, University of Alberta (1999)Google Scholar
  25. 25.
    Papadias, D., Egenhofer, M.J., Sharma, J.: Hierarchical reasoning about direction relations. In: GIS 1996: Proceedings of the 4th ACM international workshop on Advances in geographic information systems, pp. 105–112. ACM, New York (1996)CrossRefGoogle Scholar
  26. 26.
    Maaß, W.: From vision to multimodal communication: Incremental route descriptions. Artificial Intelligence Review 8(2), 159–174 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Reineking
    • 1
  • Christian Kohlhagen
    • 1
  • Christoph Zetzsche
    • 1
  1. 1.Cognitive NeuroinformaticsUniversity of BremenBremenGermany

Personalised recommendations