Qualitative Reasoning about Convex Relations

  • Dominik Lücke
  • Till Mossakowski
  • Diedrich Wolter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5248)


Various calculi have been designed for qualitative constraint-based representation and reasoning. Especially for orientation calculi, it happens that the well-known method of algebraic closure cannot decide consistency of constraint networks, even when considering networks over base relations (= scenarios) only. We show that this is the case for all relative orientation calculi capable of distinguishing between “left of” and “right of”. Indeed, for these calculi, it is not clear whether efficient (i.e. polynomial) algorithms deciding scenario-consistency exist.

As a partial solution of this problem, we present a technique to decide global consistency in qualitative calculi. It is applicable to all calculi that employ convex base relations over the real-valued space ℝ n and it can be performed in polynomial time when dealing with convex relations only. Since global consistency implies consistency, this can be an efficient aid for identifying consistent scenarios. This complements the method of algebraic closure which can identify a subset of inconsistent scenarios.


Qualitative spatio-temporal reasoning relative orientation calculi consistency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM, 832–843 (1983)Google Scholar
  2. 2.
    Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR 1992. Principles of Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  3. 3.
    Condotta, J.F., Saade, M., Ligozat, G.: A generic toolkit for n-ary qualitative temporal and spatial calculi. In: TIME 2006: Proceedings of the Thirteenth International Symposium on Temporal Representation and Reasoning, pp. 78–86. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  4. 4.
    Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M., Pratt-Hartmann, I.E., Johan, F., Johan, F.v.B. (eds.) Handbook of Spatial Logics. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Scivos, A., Nebel, B.: Double-crossing: Decidability and computational complexity of a qualitative calculus for navigation. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 431–446. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Dechter, R.: From local to global consistency. Artificial Intelligence 55, 87–108 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Dylla, F., Moratz, R.: Empirical complexity issues of practical qualitative spatial reasoning about relative position. In: Proceedings of the Workshop on Spatial and Temporal Reasoning at ECAI 2004 (2004)Google Scholar
  9. 9.
    Scivos, A., Nebel, B.: The finest of its class: The natural, point-based ternary calculus LR for qualitative spatial reasoning. In: Spatial Cognition, pp. 283–303 (2004)Google Scholar
  10. 10.
    Scivos, A.: Einführung in eine Theorie der ternären RST-Kalküle für qualitatives räumliches Schließen. Master’s thesis, Universität Freiburg (in German) (April 2000)Google Scholar
  11. 11.
    Vilain, M.B., Kautz, H.A., van Beek, P.G.: Constraint propagation algorithms for temporal reasoning: A revised report. In: Readings in Qualitative Reasoning about Physical Systems. Morgan Kaufmann, San Francisco (1989)Google Scholar
  12. 12.
    Renz, J.: Qualitative Spatial Reasoning with Topological Information. LNCS, vol. 2293. Springer, Berlin (2002)zbMATHGoogle Scholar
  13. 13.
    Isli, A., Cohn, A.: A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artificial Intelligence 122(1-2), 137–187 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints. constraints 1, 85–118 (1996)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jber. Deutsch. Math. Verein 32, 175–176 (1923)zbMATHGoogle Scholar
  16. 16.
    Ligozat, G.: Qualitative triangulation for spatial reasoning. In: Proc. International Conference on Spatial Information Theory. A Theoretical Basis for GIS, pp. 54–68 (1993)Google Scholar
  17. 17.
    Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: Horn, W. (ed.) ECAI 2000. Proceedings of the 14th European Conference on Artificial Intelligence. IOS Press, Amsterdam (2000)Google Scholar
  18. 18.
    Moratz, R., Dylla, F., Frommberger, L.: A relative orientation algebra with adjustable granularity. In: Proceedings of the Workshop on Agents in Real-Time, and Dynamic Environments (IJCAI 2005) (2005)Google Scholar
  19. 19.
    Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Proceedings of the International Conference GIS - From Space to Territory: Theories and Methods of Spatio-Temporal Reasoning on Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, London, UK, pp. 162–178. Springer, Heidelberg (1992)Google Scholar
  20. 20.
    Renegar, J.: On the computational complexity and geometry of the first order theory of the reals. Part I–III. Journal of Symbolic Computation 13(3), 301–328 (1992); 255300, 301328, 329352zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dominik Lücke
    • 1
  • Till Mossakowski
    • 1
    • 2
  • Diedrich Wolter
    • 1
  1. 1.SFB/TR 8 Spatial Cognition Dept. of Computer ScienceUniversity of BremenBremen 
  2. 2.DFKI Lab BremenSafe & Secure Cognitive SystemsBremen 

Personalised recommendations