Spatially Constrained Grammars for Mobile Intention Recognition

  • Peter Kiefer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5248)


Mobile intention recognition is the problem of inferring a mobile agent’s intentions from her spatio-temporal behavior. The intentions an agent can have in a specific situation depend on the spatial context, and on the spatially contextualized behavior history. We introduce two spatially constrained grammars that allow for modeling of complex constraints between space and intentions, one based on Context-Free, one based on Tree-Adjoining Grammars. We show which of these formalisms is suited best for frequently occurring intentional patterns. We argue that our grammars are cognitively comprehensible, while at the same time helping to prune the search space for intention recognition.


Intention recognition Mobile assistance systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmidt, C., Sridharan, N., Goodson, J.: The plan recognition problem: An intersection of psychology and artificial intelligence. Artificial Intelligence 11(1-2), 45–83 (1978)CrossRefGoogle Scholar
  2. 2.
    Kautz, H.A.: A Formal Theory of Plan Recognition. PhD thesis, University of Rochester, Rochester, NY (1987)Google Scholar
  3. 3.
    Jarvis, P.A., Lunt, T.F., Myers, K.L.: Identifying terrorist activity with ai plan-recognition technology. AI Magazine 26(3), 73–81 (2005)Google Scholar
  4. 4.
    Bui, H.H.: Efficient approximate inference for online probabilistic plan recognition. Technical Report 1/2002, School of Computing Science, Curtin University of Technology, Perth, WA, Australia (2002)Google Scholar
  5. 5.
    Baus, J., Krueger, A., Wahlster, W.: A resource-adaptive mobile navigation system. In: Proc. 7th International Conference on Intelligent User Interfaces, San Francisco, USA, pp. 15–22. ACM Press, New York (2002)CrossRefGoogle Scholar
  6. 6.
    Seifert, I., Barkowsky, T., Freksa, C.: Region-Based Representation for Assistance with Spatio-Temporal Planning in Unfamiliar Environments. In: Location Based Services and TeleCartography, pp. 179–192. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Geib, C.W., Steedman, M.: On natural language processing and plan recognition. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1612–1617 (2007)Google Scholar
  8. 8.
    Kiefer, P., Schlieder, C.: Exploring context-sensitivity in spatial intention recognition. In: Workshop on Behavior Monitoring and Interpretation, 40th German Conference on Artificial Intelligence (KI-2007), CEUR, vol. 296, pp. 102–116 (2007) 102–116 ISSN 1613-0073Google Scholar
  9. 9.
    Schlieder, C.: Representing the meaning of spatial behavior by spatially grounded intentional systems. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 30–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Egenhofer, M.J., Franzosa, R.D.: Point-set topological relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  11. 11.
    Kuhn, W.: Ontologies in support of activities in geographical space. International Journal of Geographical Information Science 15(7), 613–631 (2001)CrossRefGoogle Scholar
  12. 12.
    Stein, K., Schlieder, C.: Recognition of intentional behavior in spatial partonomies. In: ECAI 2004 Worskhop 15: Spatial and Temporal Reasoning (16th European Conference on Artificial Intelligence) (2005)Google Scholar
  13. 13.
    Schlieder, C., Werner, A.: Interpretation of intentional behavior in spatial partonomies. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 401–414. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Kautz, H., Allen, J.F.: Generalized plan recognition. In: Proc. of the AAAI conference 1986 (1986)Google Scholar
  15. 15.
    Geib, C.W., Goldman, R.P.: Recognizing plan/goal abandonment. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI), pp. 1515–1517 (2003)Google Scholar
  16. 16.
    Wooldridge, M.: Reasoning About Rational Agents. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  17. 17.
    Pynadath, D.V.: Probabilistic Grammars for Plan Recognition. PhD thesis, The University of Michigan (1999)Google Scholar
  18. 18.
    Hirtle, S., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory and Cognition 13(3), 208–217 (1985)Google Scholar
  19. 19.
    Joshi, A.K., Vijay-Shanker, K., Weir, D.: The convergence of mildly context-sensitive grammar formalisms. Technical Report MS-CIS-90-01, Department of Computer and Information Science, University of Pennsylvania (1990)Google Scholar
  20. 20.
    Vijay-Shanker, K., Weir, D.: The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27(6), 511–546 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Joshi, A., Levy, L., Takahashi, M.: Tree adjunct grammars. Journal of Computer and System Sciences 10, 136–163 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 69–124. Springer, Berlin (1997)Google Scholar
  23. 23.
    Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky, A.M. (eds.) Natural Language Parsing: Psychological, Computational, and Theoretical Perspectives, pp. 206–250. Cambridge University Press, Cambridge (1985)Google Scholar
  24. 24.
    Vijay-Shanker, K., Joshi, A.K.: Some computational properties of tree adjoining grammars. In: Meeting of the Association for Computational Linguistics, Chicago, Illinois, pp. 82–83 (1985)Google Scholar
  25. 25.
    Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM 13(2), 94–102 (1970)zbMATHCrossRefGoogle Scholar
  26. 26.
    Dee, H., Hogg, D.: Detecting inexplicable behaviour. In: Proceedings of the British Machine Vision Conference, pp. 477–486. The British Machine Vision Association (2004)Google Scholar
  27. 27.
    Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  28. 28.
    Chanda, G., Dellaert, F.: Grammatical methods in computer vision: An overview. Technical Report GIT-GVU-04-29, College of Computing, Georgia Institute of Technology, Atlanta, GA, USA (November 2004),
  29. 29.
    Bobick, A., Ivanov, Y.: Action recognition using probabilistic parsing. In: Proc. of the Conference on Computer Vision and Pattern Recognition, pp. 196–202 (1998)Google Scholar
  30. 30.
    Webber, B., Knott, A., Stone, M., Joshi, A.: Discourse relations: A structural and presuppositional account using lexicalised tag. In: Proc. of the 37th. Annual Meeting of the American Association for Computational Linguistics (ACL1999), pp. 41–48 (1999)Google Scholar
  31. 31.
    Charniak, E., Goldman, R.P.: A bayesian model of plan recognition. Artificial Intelligence 64(1), 53–79 (1993)CrossRefGoogle Scholar
  32. 32.
    Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artificial Intelligence 171(5-6), 311–331 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Bui, H.H.: A general model for online probabilistic plan recognition. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2003)Google Scholar
  34. 34.
    Brandherm, B., Schwartz, T.: Geo referenced dynamic Bayesian networks for user positioning on mobile systems. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 223–234. Springer, Heidelberg (2005)Google Scholar
  35. 35.
    Ashbrook, D., Starner, T.: Using gps to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)CrossRefGoogle Scholar
  36. 36.
    Gottfried, B., Witte, J.: Representing spatial activities by spatially contextualised motion patterns. In: RoboCup 2007, International Symposium, pp. 329–336. Springer, Heidelberg (2007)Google Scholar
  37. 37.
    Samaan, N., Karmouch, A.: A mobility prediction architecture based on contextual knowledge and spatial conceptual maps. IEEE Transactions on Mobile Computing 4(6), 537–551 (2005)CrossRefGoogle Scholar
  38. 38.
    Musto, A., Stein, K., Eisenkolb, A., Röfer, T., Brauer, W., Schill, K.: From motion observation to qualitative motion representation. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, pp. 115–126. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  39. 39.
    Laube, P., van Krefeld, M., Imfeld, S.: Finding remo - detecting relative motion patterns in geospatial lifelines. In: Developments in Spatial Data Handling, Proceedings of the 11th International Symposium on Spatial Data Handling, pp. 201–215 (2004)Google Scholar
  40. 40.
    Steedman, M.: Plans, affordances, and combinatory grammar. Linguistics and Philosophy 25(5-6), 725–753 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peter Kiefer
    • 1
  1. 1.Laboratory for Semantic Information TechnologiesOtto-Friedrich-University BambergBambergGermany

Personalised recommendations