The Network of Reference Frames Theory: A Synthesis of Graphs and Cognitive Maps

  • Tobias Meilinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5248)

Abstract

The network of reference frames theory explains the orientation behavior of human and non-human animals in directly experienced environmental spaces, such as buildings or towns. This includes self-localization, route and survey navigation. It is a synthesis of graph representations and cognitive maps, and solves the problems associated with explaining orientation behavior based either on graphs, maps or both of them in parallel. Additionally, the theory points out the unique role of vista spaces and asymmetries in spatial memory. New predictions are derived from the theory, one of which has been tested recently.

Keywords

graph cognitive map spatial memory reference frame route knowledge survey knowledge self-localization environmental space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, A.T.D.: Do animals have cognitive maps? Journal of Experimental Biology 199, 219–224 (1996)Google Scholar
  2. 2.
    Byrne, P., Becker, S., Burgess, N.: Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review 114, 340–375 (2007)CrossRefGoogle Scholar
  3. 3.
    Cheng, K., Newcombe, N.S.: Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review 12, 1–23 (2005)Google Scholar
  4. 4.
    Chown, E., Kaplan, S., Kortenkamp, D.: Prototypes location, and associative networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive Science 19, 1–51 (1995)CrossRefGoogle Scholar
  5. 5.
    Ekstrom, A., Kahana, M., Caplan, J., Fields, T., Isham, E., Newman, E., Fried, I.: Cellular networks underlying human spatial navigation. Nature 425, 184–187 (2003)CrossRefGoogle Scholar
  6. 6.
    Fujita, N., Klatzky, R.L., Loomis, J.M., Golledge, R.G.: The encoding-error model of pathway completion without vision. Geographical Analysis 25, 295–314 (1993)Google Scholar
  7. 7.
    Gallistel, C.R.: The organization of learning. MIT Press, Cambridge (1990)Google Scholar
  8. 8.
    Hamilton, D.A., Driscoll, I., Sutherland, R.J.: Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behavioural Brain Research 129, 159–170 (2002)CrossRefGoogle Scholar
  9. 9.
    Hegarty, M., Waller, D.: Individual differences in spatial abilities. In: Shah, P., Miyake, A. (eds.) The Cambridge Handbook of Visuospatial Thinking, pp. 121–169. Cambridge University Press, Cambridge (2005)Google Scholar
  10. 10.
    Hein, A., Held, R.: A neural model for labile sensorimotor coordination. In: Bernard, E.E., Kare, M.R. (eds.) Biological prototypes and synthetic systems, vol. 1, pp. 71–74. Plenum, New York (1962)Google Scholar
  11. 11.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory & Cognition 13, 208–217 (1985)Google Scholar
  12. 12.
    Holmes, M.C., Sholl, M.J.: Allocentric coding of object-to-object relations in overlearned and novel environments. Journal of Experimental Psychology: Learning, Memory and Cognition 31, 1069–1078 (2005)CrossRefGoogle Scholar
  13. 13.
    Huttenlocher, J., Hedges, L.V., Duncan, S.: Categories and particulars: prototype effects in estimating spatial location. Psychological Review 98, 352–376 (1991)CrossRefGoogle Scholar
  14. 14.
    Janzen, G.: Memory for object location and route direction in virtual large-scale space. The Quarterly Journal of Experimental Psychology 59, 493–508 (2006)CrossRefGoogle Scholar
  15. 15.
    Klatzky, R.L.: Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: Freska, C., Habel, C., Wender, K.F. (eds.) Spatial cognition - An interdisciplinary approach to representation and processing of spatial knowledge, pp. 1–17. Springer, Berlin (1998)Google Scholar
  16. 16.
    Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 119, 191–233 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Loomis, J.M., Klatzky, R.L., Golledge, R.G., Philbeck, J.W.: Human navigation by path integration. In: Golledge, R.G. (ed.) Wayfinding behavior, pp. 125–151. John Hopkins Press, Baltimore (1999)Google Scholar
  18. 18.
    MacFarlane, D.A.: The role of kinesthesis in maze learning. University of California Publications in Psychology 4 277-305 (1930); (cited from Spada, H. (ed.) Lehrbuch allgemeine Psychologie. Huber, Bern (1992)Google Scholar
  19. 19.
    McNaughton, B.L., Leonard, B., Chen, L.: Cortical-hippocampal interactions and cognitive mapping: A hypothesis based on reintegration of parietal and inferotemporal pathways for visual processing. Psychbiology 17, 230–235 (1989)Google Scholar
  20. 20.
    Mallot, H.: Spatial cognition: Behavioral competences, neural mechanisms, and evolutionary scaling. Kognitionswissenschaft 8, 40–48 (1999)CrossRefGoogle Scholar
  21. 21.
    Meilinger, T., Hölscher, C., Büchner, S.J., Brösamle, M.: How Much Information Do You Need? Schematic Maps in Wayfinding and Self Localisation. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition V, pp. 381–400. Springer, Berlin (2007)Google Scholar
  22. 22.
    Meilinger, T., Knauff, M., Bülthoff, H.H.: Working memory in wayfinding - a dual task experiment in a virtual city. Cognitive Science 32, 755–770 (2008)CrossRefGoogle Scholar
  23. 23.
    Meilinger, T., Riecke, B.E., Bülthoff, H.H.: Orientation Specificity in Long-Term-Memory for Environmental Spaces (submitted)Google Scholar
  24. 24.
    Moeser, S.D.: Cognitive mapping in a complex building. Environment and Behavior 20, 21–49 (1988)CrossRefGoogle Scholar
  25. 25.
    Montello, D.R.: Spatial orientation and the angularity of urban routes: A field study. Environment and Behavior 23, 47–69 (1991)CrossRefGoogle Scholar
  26. 26.
    Montello, D.R.: Scale and multiple psychologies of space. In: Frank, A.U., Campari, I. (eds.) Spatial information theory: A theoretical basis for GIS, pp. 312–321. Springer, Berlin (1993)Google Scholar
  27. 27.
    Montello, D.R., Pick, H.L.: Integrating knowledge of vertically aligned large-scale spaces. Environment and Behavior 25, 457–484 (1993)CrossRefGoogle Scholar
  28. 28.
    Mou, W., Xiao, C., McNamara, T.P.: Reference directions and reference objects in spatial memory of a briefly viewed layout. Cognition 108, 136–154 (2008)CrossRefGoogle Scholar
  29. 29.
    O’Keefe, J., Burgess, N.: Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996)CrossRefGoogle Scholar
  30. 30.
    O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)Google Scholar
  31. 31.
    Poucet, B.: Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review 100, 163–182 (1993)CrossRefGoogle Scholar
  32. 32.
    Restat, J., Steck, S.D., Mochnatzki, H.F., Mallot, H.A.: Geographical slant facilitates navigation and orientation in virtual environments. Perception 33, 667–687 (2004)CrossRefGoogle Scholar
  33. 33.
    Rump, B., McNamara, T.P.: Updating Models of Spatial Memory. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition V, pp. 249–269. Springer, Berlin (2007)Google Scholar
  34. 34.
    Schnapp, B., Warren, W.: Wormholes in virtual reality: What spatial knowledge is learned for navigation? In: Proceedings of the 7th Annual Meeting of the Vision Science Society 2007, Sarasota, Florida, USA (2007)Google Scholar
  35. 35.
    Sholl, J.M., Kenny, R.J., DellaPorta, K.A.: Allocentric-heading recall and its relation to self-reported sense-of-direction. Journal of Experimental Psychology: Learning, Memory, and Cognition 32, 516–533 (2006)CrossRefGoogle Scholar
  36. 36.
    Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Reese, H. (ed.) Advances in Child Development and Behavior, vol. 10, pp. 10–55. Academic Press, New York (1975)Google Scholar
  37. 37.
    Skaggs, W.E., McNaughton, B.L.: Spatial Firing Properties of Hippocampal CA1 Populations in an Environment Containing Two Visually Identical Regions. Journal of Neuroscience 18, 8455–8466 (1998)Google Scholar
  38. 38.
    Stankiewicz, B.J., Legge, G.E., Mansfield, J.S., Schlicht, E.J.: Lost in Virtual Space: Studies in Human and Ideal Spatial Navigation. Journal of Experimental Psychology: Human Perception and Performance 37, 688–704 (2006)CrossRefGoogle Scholar
  39. 39.
    Stern, E., Leiser, D.: Levels of spatial knowledge and urban travel modeling. Geographical Analysis 20, 140–155 (1988)Google Scholar
  40. 40.
    Stevens, A., Coupe, P.: Distortions in judged spatial relations. Cognitive Psychology 10, 422–437 (1978)CrossRefGoogle Scholar
  41. 41.
    Thorndyke, P.W., Hayes-Roth, B.: Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology 14, 560–589 (1982)CrossRefGoogle Scholar
  42. 42.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)MATHGoogle Scholar
  43. 43.
    Tolman, E.C., Ritchie, B.F., Khalish, D.: Studies in spatial learning. I. Orientation and the short-cut. Journal of Experimental Psychology 36, 13–24 (1946)CrossRefGoogle Scholar
  44. 44.
    Touretzky, D.S., Redish, A.D.: Theory of rodent navigation based on interacting representations of space. Hippocampus 6, 247–270 (1996)CrossRefGoogle Scholar
  45. 45.
    Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.-A.: Biologically based artificial navigation systems: Review and prospects. Progress in Neurobiology 51, 483–544 (1997)CrossRefGoogle Scholar
  46. 46.
    Wang, F.R., Spelke, E.S.: Human spatial representation: insights form animals. Trends in Cognitive Sciences 6, 376–382 (2002)CrossRefGoogle Scholar
  47. 47.
    Wang, R.F., Brockmole, J.R.: Simultaneous spatial updating in nested environments. Psychonomic Bulletin & Review 10, 981–986 (2003)Google Scholar
  48. 48.
    Werner, S., Krieg-Brückner, B., Herrmann, T.: Modelling Navigational Knowledge by Route Graphs. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, pp. 295–316. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  49. 49.
    Wiener, J., Mallot, H.: Fine-to-coarse route planning and navigation in regionalized environments. Spatial Cognition and Computation 3, 331–358 (2003)CrossRefGoogle Scholar
  50. 50.
    Yeap, W.K.: Toward a computational theory of cognitive maps. Artificial Intelligence 34, 297–360 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tobias Meilinger
    • 1
  1. 1.Max-Planck-Institute for Biological CyberneticsTübingenGermany

Personalised recommendations