Modeling Synchronization Loss in Large-Scale Brain Dynamics

  • Antonio J. Pons Rivero
  • Jose Luis Cantero
  • Mercedes Atienza
  • Jordi García-Ojalvo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5164)


We implement a model of the large-scale dynamics of the brain, and analyze the effect of both short- and long-range connectivity degradation on its coordinated activity, with the ultimate goal of comparing the structural and functional characteristics of neurodegenerative diseases such as Alzheimer’s. A preliminary comparison between the results obtained with the model and the activity measured in patients diagnosed with mild cognitive impairment (a precursor of Alzheimer’s disease) and healthy elderly controls is shown.


Mild Cognitive Impairment Healthy Elderly Subject Cortical Column Neighboring Voxels Neural Mass Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7(2), 153–160 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Jansen, B., Zouridakis, G., Brandt, M.: A neurophysiologically-based mathematical model of flash visual evoked potentials. Biological Cybernetics 68(3), 275–283 (1993)CrossRefGoogle Scholar
  3. 3.
    Jansen, B., Rit, V.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics 73(4), 357–366 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    David, O., Friston, K.J.: A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20(3), 1743–1755 (2003)CrossRefGoogle Scholar
  5. 5.
    Ursino, M., Zavaglia, M., Astolfi, L., Babiloni, F.: Use of a neural mass model for the analysis of effective connectivity among cortical regions based on high resolution EEG recordings. Biological Cybernetics 96(3), 351–365 (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Sotero, R.C., Trujillo-Barreto, N.J., Iturria-Medina, Y., Carbonell, F., Jimenez, J.C.: Realistically coupled neural mass models can generate EEG rhythms. Neural Comp. 19(2), 478–512 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Stam, C., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex 17(1), 92–99 (2007)CrossRefGoogle Scholar
  8. 8.
    Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources with diminished bias from common sources. Human Brain Mapping 28(11), 1178–1193 (2007)CrossRefGoogle Scholar
  9. 9.
    Thompson, P.M., Hayashi, K.M., de Zubicaray, G., Janke, A.L., Rose, S.E., Semple, J., Herman, D., Hong, M.S., Dittmer, S.S., Doddrell, D.M., Toga, A.W.: Dynamics of gray matter loss in Alzheimer’s disease. Journal of Neuroscience 23(3), 994–1005 (2003)Google Scholar
  10. 10.
    Grimbert, F., Faugeras, O.: Bifurcation analysis of Jansen’s neural mass model. Neural Computation 18(12), 3052–3068 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cruz-Vadell, A., Atienza, M., Gil-Neciga, E., Gomez-Herrero, G., Rodriguez-Romero, R., Garcia-Solis, D., Cantero, J.L.: Functional integrity of thalamocortical circuits differentiates normal aging from mild cognitive impairment (sumbitted, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Antonio J. Pons Rivero
    • 1
  • Jose Luis Cantero
    • 2
  • Mercedes Atienza
    • 2
  • Jordi García-Ojalvo
    • 1
  1. 1.Departament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaTerrassaSpain
  2. 2.Laboratory of Functional NeuroscienceUniversidad Pablo de OlavideSevillaSpain

Personalised recommendations