Towards Personalized Neural Networks for Epileptic Seizure Prediction

  • António Dourado
  • Ricardo Martins
  • João Duarte
  • Bruno Direito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5164)

Abstract

Seizure prediction for untreatable epileptic patients, one of the major challenges of present neuroinformatics researchers, will allow a substantial improvement in their safety and quality of life. Neural networks, because of their plasticity and degrees of freedom, seem to be a good approach to consider the enormous variability of physiological systems. Several architectures and training algorithms are comparatively proposed in this work showing that it is possible to find an adequate network for one patient, but care must be taken to generalize to other patients. It is claimed that each patient will have his (her) own seizure prediction algorithms.

Keywords

Epilepsy data mining seizure prediction classification neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Browne, T., Holmes, G.: Handbook of epilepsy. Lippincott Williams & Wilkins (2000)Google Scholar
  2. 2.
    Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: The long and winding road. Brain 130, 314–333 (2007)CrossRefGoogle Scholar
  3. 3.
    Schelter, B., Winterhalder, M., Feldwisch, G., Drentrup, H., Wohlmuth, J., Nawrath, J., Brandt, A., Schulze-Bonhage, A., Timmer, J.: Seizure prediction: The impact of long prediction horizons. Epilepsy research 73, 213–217 (2007)CrossRefGoogle Scholar
  4. 4.
    Guler, I., Ubeyli, E.D.: Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction. Expert Systems with Applications 27, 323–330 (2004)CrossRefGoogle Scholar
  5. 5.
    Subasi, A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Computers in Biology and Medicine 37, 227–244 (2007)CrossRefGoogle Scholar
  6. 6.
    Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., et al.: Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30, 51–64 (2001)CrossRefGoogle Scholar
  7. 7.
    Esteller, R., Echauz, J., D’Alessandro, M., Worrell, G., et al.: Continuous energy variation during the seizure cycle: towards an on-line accumulated energy. Clinical Neurophysiology 116, 517–526 (2005)CrossRefGoogle Scholar
  8. 8.
    Gigola, S., Ortiz, F., D’Atellis, C., Silva, W., Kochen, S.: Prediction of epileptic seizures using accumulated energy in a multiresolution framework. Journal of Neuroscience Methods 138, 107–111 (2004)CrossRefGoogle Scholar
  9. 9.
    Chaovalitwongse, W., Iasemidis, L.D., Pardalos, P.M., Carney, P.R., Shiau, D.S., Sackellares, J.C.: Performance of a seizure warning algorithm based on the dynamics of intracranial EEG. Epilepsy 64, 93–113 (2005)CrossRefGoogle Scholar
  10. 10.
    Subasi: Epileptic seizure detection using dynamic wavelet network. Expert System with applications 29, 343–355 (2005)Google Scholar
  11. 11.
    Kemal Kiymik, M., Guler, Í., Dizibuyuk, A., Akin, M.: Comparison of STFT and Wavelet Transform Methods in Determining Epileptic Seizure Activity in EEG Signals for real-time application. Computers in Biology and Medicine 35, 603–616 (2005)CrossRefGoogle Scholar
  12. 12.
    Ouyang, G., Li, X., Li, Y., Guan, X.: Application of wavelet-based similarity analysis to epileptic seizures prediction. Computers in Biology and medicine 37, 430–437 (2007)CrossRefGoogle Scholar
  13. 13.
    Freiburger Zentrum fur Datenanalyse und mollbildung, http://www.fdm.uni-freiburg.de/groups/timeseries/epi/EEGData/download/infos.txt
  14. 14.
    Le Van Quyen, M., Amor, F., Rudrauf, D.: Exploring the dynamics of collective synchronizations in large ensembles of brain signals. J. Physiol. (in press, 2007)Google Scholar
  15. 15.
    The Mathworks, Inc.Google Scholar
  16. 16.
    Merkwirth, C., Parlitz, U., Wedekind, I., Lauterborn, W.: TSTOOL User Manual, Version 1.11, http://www.dpi.physik.uni-goettingen.de/tstool/HTML/index.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • António Dourado
    • 1
  • Ricardo Martins
    • 1
  • João Duarte
    • 1
  • Bruno Direito
    • 1
  1. 1.Departament of Informatics EngineeringCentro de Informática e Sistemas da Universidade de CoimbraCoimbra 

Personalised recommendations